浏览全部资源
扫码关注微信
国网江苏省电力有限公司信息通信分公司,江苏 南京 210024
[ "余竞航(1995- ),男,国网江苏省电力有限公司信息通信分公司工程师,主要研究方向为电力信息技术、算力网络。" ]
[ "赵一辰(1988- ),男,现就职于国网江苏省电力有限公司信息通信分公司,主要研究方向为电力信息技术、人工智能。" ]
[ "王凌(1992- ),男,国网江苏省电力有限公司信息通信分公司工程师,主要研究方向为电力信息技术、云计算。" ]
[ "陈欣(1994- ),男,国网江苏省电力有限公司信息通信分公司工程师,主要研究方向为电力信息技术、人工智能。" ]
[ "邹昊东(1987- ),男,国网江苏省电力有限公司信息通信分公司高级工程师,主要研究方向为电力信息技术、云计算。" ]
收稿日期:2024-07-19,
修回日期:2024-10-15,
纸质出版日期:2024-10-20
移动端阅览
余竞航,赵一辰,王凌等.基于虚拟网络嵌入的异构算力网络资源管理[J].电信科学,2024,40(10):86-99.
YU Jinghang,ZHAO Yichen,WANG Ling,et al.Heterogeneous computing network resource management based on virtual network embedding[J].Telecommunications Science,2024,40(10):86-99.
余竞航,赵一辰,王凌等.基于虚拟网络嵌入的异构算力网络资源管理[J].电信科学,2024,40(10):86-99. DOI: 10.11959/j.issn.1000-0801.2024230.
YU Jinghang,ZHAO Yichen,WANG Ling,et al.Heterogeneous computing network resource management based on virtual network embedding[J].Telecommunications Science,2024,40(10):86-99. DOI: 10.11959/j.issn.1000-0801.2024230.
随着人工智能大模型引领的新应用和新需求的蓬勃兴起,算力规模和计算技术正经历着前所未有的快速演进与多元化创新。然而,在算力网络呈现集群化和异构化趋势的同时,算力需求迅猛增长与资源利用低效性之间的矛盾日益凸显。如何实现对异构算力的统一高效管控以提升资源利用率,已成为当前研究的重要课题。基于网络虚拟化(network virtualization,NV)技术,提出了一种基于虚拟网络嵌入(virtual network embedding,VNE)异构跨域算力资源分配方法。具体而言,构建了一个基于深度强化学习(deep reinforcement learning,DRL)模型的策略网络,负责精准计算候选算网节点与链路,以实现资源优化分配。通过一系列仿真实验,验证了该方法的有效性,为解决异构算力管理问题提供了新的思路和方法。
With the booming development of new applications and demands led by large AI models
computing scale and technology are experiencing unprecedented rapid evolution and diversified innovation. However
as computing networks show a trend of clustering and heterogeneity
the contradiction between the rapid growth of computing demand and the inefficiency of resource utilization has become increasingly prominent. How to achieve unified and efficient management of heterogeneous computing to improve resource utilization has become an important research topic. Based on network virtualization (NV) technology
a heterogeneous cross-domain computing resource allocation method based on virtual network embedding (VNE) was proposed. Specifically
a policy network based on a deep reinforcement learning (DRL) model was constructed to accurately calculate candidate computing nodes and links for optimal resource allocation. Through a series of simulation experiments
it verifies the effectiveness of this method and provids new ideas for solving the problem of heterogeneous computing management.
中国信息通信研究院 . 中国算力发展指数白皮书(2023年) [R ] . 2023 .
CAICT . White Paper on the development of China’s computing power index(2023) [R ] . 2023 .
贾庆民 , 丁瑞 , 刘辉 , 等 . 算力网络研究进展综述 [J ] . 网络与信息安全学报 , 2021 , 7 ( 5 ): 1 - 12 .
JIA Q M , DING R , LIU H , et al . Survey on research progress for compute first networking [J ] . Chinese Journal of Network and Information Security , 2021 , 7 ( 5 ): 1 - 12 .
CHANG Y P , WANG X , WANG J D , et al . A survey on evaluation of large language models [J ] . ACM Transactions on Intelligent Systems and Technology , 2024 , 15 ( 3 ): 1 - 45 .
BROWN T , MANN B , RYDER N , et al . Language models are few-shot learners [J ] . Advances in neural information processing systems , 2020 , 33 : 1877 - 1901 .
国家信息中心 . “人工智能+”时代公共云发展模式与路径研究 [R ] . 2023 .
The State Information Center . “ Artificial intelligence +” research on the development mode and path of public cloud in the era [R ] . 2023 .
WU S , CHEN N , XIAO A L , et al . AI-empowered virtual network embedding: a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2024 ( 99 ): 1 .
雷波 , 王江龙 , 赵倩颖 , 等 . 基于计算、存储、传送资源融合化的新型网络虚拟化架构 [J ] . 电信科学 , 2020 , 36 ( 7 ): 42 - 54 .
LEI B , WANG J L , ZHAO Q Y , et al . Novel network virtualization architecture based on the convergence of computing, storage and transport resources [J ] . Telecommunications Science , 2020 , 36 ( 7 ): 42 - 54 .
CHEN N , SHEN S , DUAN Y , et al . Non-euclidean graph-convolution virtual network embedding for space-air-ground integrated networks [J ] . Drones , 2023 , 7 ( 3 ): 165 .
FISCHER A , BOTERO J F , BECK M T , et al . Virtual network embedding: a survey [J ] . IEEE Communications Surveys & Tutorials , 2013 , 15 ( 4 ): 1888 - 1906 .
ZHANG P Y , CHEN N , LI S B , et al . Multi-domain virtual network embedding algorithm based on horizontal federated learning [J ] . IEEE Transactions on Information Forensics and Security , 2023 , 18 : 3363 - 3375 .
WANG X J , LI J M , NING Z L , et al . Wireless powered mobile edge computing networks: a survey [J ] . ACM Computing Surveys , 2023 , 55 ( 13 s): 1 - 37 .
林睿 , 邢文娟 , 雷波 . 一种面向计算的网络模态: 算力网络模态探讨 [J ] . 电信科学 , 2023 , 39 ( 10 ): 128 - 135 .
LIN R , XING W J , LEI B . Discussion on a computation-oriented network modality—computing power network modality [J ] . Telecommunications Science , 2023 , 39 ( 10 ): 128 - 135 .
段晓东 , 姚惠娟 , 付月霞 , 等 . 面向算网一体化演进的算力网络技术 [J ] . 电信科学 , 2021 , 37 ( 10 ): 76 - 85 .
DUAN X D , YAO H J , FU Y X , et al . Computing force network technologies for computing and network integration evolution [J ] . Telecommunications Science , 2021 , 37 ( 10 ): 76 - 85 .
ZHANG Y M , LAN X L , REN J , et al . Efficient computing resource sharing for mobile edge-cloud computing networks [J ] . IEEE/ACM Transactions on Networking , 2020 , 28 ( 3 ): 1227 - 1240 .
何涛 , 杨振东 , 曹畅 , 等 . 算力网络发展中的若干关键技术问题分析 [J ] . 电信科学 , 2022 , 38 ( 6 ): 62 - 70 .
HE T , YANG Z D , CAO C , et al . Analysis of some key technical problems in the development of computing power network [J ] . Telecommunications Science , 2022 , 38 ( 6 ): 62 - 70 .
雷波 , 刘增义 , 王旭亮 , 等 . 基于云、网、边融合的边缘计算新方案: 算力网络 [J ] . 电信科学 , 2019 , 35 ( 9 ): 44 - 51 .
LEI B , LIU Z Y , WANG X L , et al . Computing network: a new multi-access edge computing [J ] . Telecommunications Science , 2019 , 35 ( 9 ): 44 - 51 .
张叶红 , 董一川 , 相洋 , 等 . 从“算力中心” 到“算力网”: 从算力角度谈算网一体的机遇与挑战 [J ] . 信息通信技术 , 2023 , 17 ( 3 ): 28 - 33 .
ZHANG Y H , DONG Y C , XIANG Y , et al . From “computing centers” to “computing net” —the opportunities and challenges of computing and networking convergence from the perspective of computing resources [J ] . Information and Communications Technologies , 2023 , 17 ( 3 ): 28 - 33 .
CHOWDHURY N M M K , RAHMAN M R , BOUTABA R . Virtual network embedding with coordinated node and link mapping [C ] // Proceedings of the IEEE INFOCOM 2009 . Piscataway : IEEE Press , 2009 : 783 - 791 .
CHEN N , ZHANG P Y , KUMAR N , et al . Spectral graph theory-based virtual network embedding for vehicular fog computing: a deep reinforcement learning architecture [J ] . Knowledge-Based Systems , 2022 , 257 : 109931 .
CHENG X , SU S , ZHANG Z B , et al . Virtual network embedding through topology-aware node ranking [J ] . ACM SIGCOMM Computer Communication Review , 2011 , 41 ( 2 ): 38 - 47 .
WANG C , ZHENG F H , ZHENG G C , et al . Modeling on virtual network embedding using reinforcement learning [J ] . Concurrency and Computation: Practice and Experience , 2020 , 32 ( 23 ): e6020 .
LU H C , ZHANG F Y . Resource fragmentation-aware embedding in dynamic network virtualization environments [J ] . IEEE Transactions on Network and Service Management , 2022 , 19 ( 2 ): 936 - 948 .
FAN W B , XIAO F , LV M J , et al . Node essentiality assessment and distributed collaborative virtual network embedding in datacenters [J ] . IEEE Transactions on Parallel and Distributed Systems , 2023 , 34 ( 4 ): 1265 - 1280 .
ZHANG P Y , WANG C , JIANG C X , et al . Security-aware virtual network embedding algorithm based on reinforcement learning [J ] . IEEE Transactions on Network Science and Engineering , 2021 , 8 ( 2 ): 1095 - 1105 .
ZHANG P Y , CHEN N , SHEN S G , et al . AI-enabled space-air-ground integrated networks: management and optimization [J ] . IEEE Network , 2024 , 38 ( 2 ): 186 - 192 .
DE BAST S , TORREA-DURAN R , CHIUMENTO A , et al . Deep reinforcement learning for dynamic network slicing in IEEE 802.11 networks [C ] // Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway : IEEE Press , 2019 : 264 - 269 .
WU S , CHEN N , XIAO A L , et al . AI-enabled deployment automation for 6G space-air-ground integrated networks: challenges, design, and outlook [J ] . IEEE Network , 2024 ( 99 ): 1 .
YAO H P , MA S H , WANG J J , et al . A continuous-decision virtual network embedding scheme relying on reinforcement learning [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 2 ): 864 - 875 .
ZHANG P Y , CHEN N , XU G J , et al . Multi-target-aware dynamic resource scheduling for cloud-fog-edge multi-tier computing network [J ] . IEEE Transactions on Intelligent Transportation Systems , 2024 , 25 ( 5 ): 3885 - 3897 .
WU S , CHEN N , WEN G H , et al . Virtual network embedding for task offloading in IIoT: a DRL-assisted federated learning scheme [J ] . IEEE Transactions on Industrial Informatics , 2024 , 20 ( 4 ): 6814 - 6824 .
YAN Z X , GE J G , WU Y L , et al . Automatic virtual network embedding: a deep reinforcement learning approach with graph convolutional networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 6 ): 1040 - 1057 .
ZHANG P Y , WANG C , KUMAR N , et al . Dynamic virtual network embedding algorithm based on graph convolution neural network and reinforcement learning [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 12 ): 9389 - 9398 .
ZHANG P Y , CHEN N , KUMAR N , et al . Energy allocation for vehicle-to-grid settings: a low-cost proposal combining DRL and VNE [J ] . IEEE Transactions on Sustainable Computing , 2024 , 9 ( 1 ): 75 - 87 .
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构