浏览全部资源
扫码关注微信
1.中国科学院计算技术研究所,北京 100190
2.鹏城实验室,广东 深圳 518055
3.中国科学院大学计算机科学与技术学院,北京 101408
[ "胡叠丽(1995- ),女,中国科学院计算技术研究所、鹏城实验室和中国科学院大学计算机科学与技术学院博士生,主要研究方向为边缘计算、多媒体系统、网络优化等。" ]
[ "杨哲铭(1996- ),男,中国科学院计算技术研究所和中国科学院大学计算机科学与技术学院博士生,主要研究方向为多媒体系统、边缘智能、分布式推理、机器学习等。" ]
[ "纪雯(1976- ),女,博士,中国科学院计算技术研究所研究员、博士生导师,鹏城实验室兼职教授,主要研究方向为多媒体系统、智能多媒体计算编码传输、多媒体VPU芯片设计等。" ]
收稿日期:2024-07-30,
修回日期:2024-10-14,
纸质出版日期:2024-11-20
移动端阅览
胡叠丽,杨哲铭,纪雯.基于移动边缘计算的多流自适应卸载方案[J].电信科学,2024,40(11):1-15.
HU Dieli,YANG Zheming,JI Wen.Multi-stream adaptive offloading scheme based on mobile edge computing[J].Telecommunications Science,2024,40(11):1-15.
胡叠丽,杨哲铭,纪雯.基于移动边缘计算的多流自适应卸载方案[J].电信科学,2024,40(11):1-15. DOI: 10.11959/j.issn.1000-0801.2024233.
HU Dieli,YANG Zheming,JI Wen.Multi-stream adaptive offloading scheme based on mobile edge computing[J].Telecommunications Science,2024,40(11):1-15. DOI: 10.11959/j.issn.1000-0801.2024233.
海量视频流的传输和分析需要大量的带宽和计算资源,这对当前基于移动边缘计算(mobile edge computing,MEC)的卸载方案提出了严峻挑战。对此,提出了一种基于多流协同优化框架的自适应卸载方案。首先,在满足长期MEC能量预算的约束条件下,通过联合优化数据流选择决策、服务器卸载决策、带宽资源分配和计算资源分配来最小化视频任务的处理成本。然后,基于李雅普诺夫优化方法,将长期优化问题转化为每个时隙独立的确定性子问题,并利用马尔可夫近似和KKT条件求解每个时隙的混合整数非线性规划问题。仿真结果表明,所提方案在满足长期MEC能量约束的同时,其成本性能显著优于已有基准研究方案。
The transmission and analysis of massive video streams require significant edge bandwidth and computational resources
posing severe challenges to the current multimedia frameworks based on mobile edge computing (MEC). To address this issue
an adaptive offloading scheme based on a multi-stream collaborative optimization framework was proposed. Firstly
under the constraint of the long-term MEC energy budget
the processing cost of video tasks was minimized by optimizing the data stream selection decisions
server offloading decisions
bandwidth resource allocation
and computing resource allocation. Then
based on the Lyapunov optimization method
the long-term optimization problem was transformed into independent deterministic subproblems for each time slot
and the mixed-integer nonlinear programming problems for each time slot were solved by Markov approximation and KKT conditions. Simulation results indicate that the proposed scheme not only meets the long-term MEC energy constraint
but also significantly outperforms existing benchmark schemes in terms of cost performance.
Ericsson . Ericsson mobility report 2022 [R ] . Stockholm : Ericsson , 2022 .
Cisco . Cisco annual internet report (2018–2023) white paper [R ] . San Jose, CA : Cisco , 2020 .
ZHANG S , WANG C , JIN Y , et al . Adaptive configuration selection and bandwidth allocation for edge-based video analytics [J ] . IEEE/ACM Transactions on Networking , 2022 , 30 ( 1 ): 285 - 298 .
YANG P , LYU F , WU W , et al . Edge coordinated query configuration for low-latency and accurate video analytics [J ] . IEEE Transactions on Industrial Informatics , 2020 , 16 ( 7 ): 4855 - 4864 .
JI W , LIANG B , WANG Y , et al . Crowd V-IoE: visual internet of everything architecture in ai-driven fog computing [J ] . IEEE Wireless Communications , 2020 , 27 ( 2 ): 51 - 57 .
HU D L , JI W , WANG Z . Multi-stream adaptive offloading of joint compressed video streams, feature streams, and semantic streams in edge computing systems [C ] // Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME) . Piscataway : IEEE Press , 2023 : 996 - 1001 .
GAO W , MA S W , DUAN L Y , et al . Digital retina: a way to make the city brain more efficient by visual coding [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 11 ): 4147 - 4161 .
WANG S Y , BI S Z , ZHANG Y-J A . Edge video analytics with adaptive information gathering: a deep reinforcement learning approach [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 9 ): 5800 - 5813 .
WANG H , XIE J . User preference based energy-aware mobile AR system with edge computing [C ] // Proceedings of the IEEE INFOCOM 2020-IEEE conference on computer communications . Piscataway : IEEE Press , 2020 : 1379 - 1388 .
LIU Y , LI Y , NIU Y , et al . Joint optimization of path planning and resource allocation in mobile edge computing [J ] . IEEE Transactions on Mobile Computing , 2020 , 19 ( 9 ): 2129 - 2144 .
XIONG X , ZHENG K , LEI L , et al . Resource allocation based on deep reinforcement learning in IoT edge computing [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 6 ): 1133 - 1146 .
ZHAO T T , HE L J , HUANG X Y , et al . DRL-based secure video offloading in EC-enabled IoT networks [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 19 ): 18710 - 18724 .
王晔 , 王逸飞 , 陈康 , 等 . 6G 网络任务卸载与细粒度切片资源调度联合优化算法 [J ] . 电信科学 , 2024 , 40 ( 5 ): 86 - 99 .
WANG Y , WANG Y F , CHEN K , et al . Joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling [J ] . Telecommunications Science , 2024 , 40 ( 5 ): 86 - 99 .
LIU Y , MAO Y , LIU Z , et al . Joint task offloading and resource allocation in heterogeneous edge environments [J ] . IEEE Transactions on Mobile Computing , 2024 , 23 ( 6 ): 7318 - 7334 .
JOŠILO S , DÁN G . Wireless and computing resource allocation for selfish computation offloading in edge computing [C ] // Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2019 : 2467 - 2475 .
JIANG H B , DAI X X , XIAO Z , et al . Joint task offloading and resource allocation for energy-constrained mobile edge computing [J ] . IEEE Transactions on Mobile Computing , 2023 , 22 ( 7 ): 4000 - 4015 .
吴柳青 , 朱晓荣 . 基于边-端协同的任务卸载资源分配联合优化算法 [J ] . 电信科学 , 2020 , 36 ( 3 ): 42 - 52 .
WU L Q , ZHU X R . Joint optimization algorithm for task offloading resource allocation based on edge-end collaboration [J ] . Telecommunications Science , 2020 , 36 ( 3 ): 42 - 52 .
NEELY M J . Stochastic network optimization with application to communication and queueing systems [M ] . Switzerland : Springer , 2010 .
CHEN M , LIEW S C , SHAO Z , et al . Markov approximation for combinatorial network optimization [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 10 ): 6301 - 6327 .
BOYD S , VANDENBERGHE L . Convex optimization [M ] . Cambridge : Cambridge University Press , 2004 .
NING Z , DONG P , WANG X , et al . Distributed and dynamic service placement in pervasive edge computing networks [J ] . IEEE Transactions on Parallel and Distributed Systems , 2021 , 32 ( 6 ): 1277 - 1292 .
LONG Y , ZHAO S , GONG S , et al . AoI-aware sensing scheduling and trajectory optimization for multi-UAV-assisted wireless backscatter networks [J ] . IEEE Transactions on Vehicular Technology , 2024 .
LIU Y , CHEN Q C , TANG X H , et al . On the buffer energy aware adaptive relaying in multiple relay network [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 9 ): 6248 - 6263 .
TRAN T X , POMPILI D . Joint task offloading and resource allocation for multi-server mobile-edge computing networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 1 ): 856 - 868 .
OUYANG T , ZHOU Z , CHEN X . Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 10 ): 2333 - 2345 .
CORMEN T H , LEISERSON C E , RIVEST R L , et al . Introduction to algorithms [M ] . 2nd ed . Cambridge, MA, USA : MIT Press , 2009 .
HU D L , HUANG G F , TANG D , et al . Joint task offloading and computation in cooperative multicarrier relaying-based mobile-edge computing systems [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 14 ): 11487 - 11502 .
GOLDSMITH A . Wireless communications [M ] . Cambridge : Cambridge University Press , 2005 .
WANG S G , GUO Y , ZHANG N , et al . Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach [J ] . IEEE Transactions on Mobile Computing , 2021 , 20 ( 3 ): 939 - 951 .
OUYANG T , CHEN X , ZHOU Z , et al . Adaptive user-managed service placement for mobile edge computing via contextual multiarmed bandit learning [J ] . IEEE Transactions on Mobile Computing , 2023 , 22 ( 3 ): 1313 - 1326 .
CHENG Z P , MIN M H , LIWANG M H , et al . Multiagent DDPG-based joint task partitioning and power control in fog computing networks [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 1 ): 104 - 116 .
0
浏览量
596
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构