浏览全部资源
扫码关注微信
1.浙江工商大学信息与电子工程学院,浙江 杭州 310018
2.UT斯达康通讯有限公司,浙江 杭州 310059
3.浙江工商大学英贤慈善学院,浙江 杭州 310018
[ "诸葛斌(1976- ),男,博士,浙江工商大学信息与电子工程学院教授,主要研究方向为网络和通信技术、互联网技术和网络安全。" ]
[ "王正贤(2000- ),男,浙江工商大学信息与电子工程学院硕士生,主要研究方向为计算机网络、深度学习和机器学习。" ]
[ "汪盈(2000- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为智慧教育和个性化推荐。" ]
[ "蔡晓丹(2001- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为智慧网络和网络资源调度。" ]
[ "董黎刚(1972- ),男,博士,浙江工商大学信息与电子工程学院教授,主要研究方向为智能网络、在线教育。" ]
[ "张子天(1988- ),男,博士,浙江工商大学信息与电子工程学院副研究员,主要研究方向为基于机器学习的网络流量预测与资源管理。" ]
[ "蒋献(1988- ),男,浙江工商大学信息与电子工程学院讲师、实验员,主要研究方向为在线教育。" ]
[ "李华(1984- ),男,UT斯达康通讯有限公司首席执行官、高级工程师,主要研究方向为网络和通信技术。" ]
[ "徐越倩(1980- ),女,博士,浙江工商大学英贤慈善学院教授,主要研究方向为共同富裕理论与制度、慈善管理、政商关系、政府管理与创新、社会组织与社会治理等。" ]
收稿日期:2024-07-15,
修回日期:2024-10-17,
纸质出版日期:2024-11-20
移动端阅览
诸葛斌,王正贤,汪盈等.基于生成对抗网络的超宽带数字信道建模[J].电信科学,2024,40(11):27-39.
ZHUGE Bin,WANG Zhengxian,WANG Ying,et al.Ultra-wideband digital channel modeling based on generative adversarial network[J].Telecommunications Science,2024,40(11):27-39.
诸葛斌,王正贤,汪盈等.基于生成对抗网络的超宽带数字信道建模[J].电信科学,2024,40(11):27-39. DOI: 10.11959/j.issn.1000-0801.2024242.
ZHUGE Bin,WANG Zhengxian,WANG Ying,et al.Ultra-wideband digital channel modeling based on generative adversarial network[J].Telecommunications Science,2024,40(11):27-39. DOI: 10.11959/j.issn.1000-0801.2024242.
在超宽带通信技术中,获取高质量的信道冲激响应数据对系统设计和性能优化至关重要。引入最小二乘生成对抗网络和改进的损失函数,能显著提升信道数据的捕捉和复现能力。结合特征匹配技术和条件生成对抗网络,可以增强生成数据的细节准确性和多样性,还能使模型根据不同通信环境和信号场景进行数据生成。在模型训练阶段,采用能够代表全局特征的重构信道数据,而在测试阶段使用了经历无线衰落的实际信道数据。实验结果显示,模型在小样本数据集和复杂衰落信道环境下的表现优于带有梯度惩罚的Wasserstein生成对抗网络(WGAN-GP),识别准确率提高4.8%,模式崩溃问题减少5%。
In ultra-wideband communication technology
high-quality channel impulse response data is crucial for system design and performance optimization. A least squares generative adversarial network (LSGAN) and an improved loss function were introduced
which significantly enhanced the ability to capture and reproduce channel data. By combining feature matching techniques with conditional generative adversarial networks (CGAN)
it was able to improve the detail accuracy and diversity of the generated data. The model was allowed to generate data according to different communication environments and signal scenarios. During the model training phase
reconstructed channel data representing global features were used
while actual channel data experiencing wireless fading were employed during the testing phase. Experimental results demonstrate that the model outperforms the WGAN-GP in small sample datasets and complex fading channel environments
with a 4.8% increase in recognition accuracy and a 5% reduction in mode collapse issues.
刘大洋 . 基于B5G和6G通信的数字孪生信道分析 [C ] //TD产业联盟,中国电子科技集团公司第七研究所《移动通信》杂志社. 推动网络演进 促进应用创新——5G网络创新研讨会(2021)论文集 . 中国移动通信集团广东公司 , 2021 : 4 .
LIU D Y . Digital twin channel analysis based on B5G and 6G communications [C ] // Proceedings of the TD Industry Alliance , The Seventh Research Institute of China Electronics Technology Group Corporation, Mobile Communications Magazine. Promoting Network Evolution and Facilitating Application Innovation - Proceedings of the 5G Network Innovation Seminar ( 2021 ). Guangzhou : China Mobile Communications Group Guangdong Company Limited , 2021 : 4 .
SANTOS L P , BASHFORD-ROGERS T , BARBOSA J , et al . Towards quantum ray tracing [J ] . IEEE Transactions on Visualization and Computer Graphics , 2024 .
WEILAND B , LECLINCHE F , KACI A , et al . Tactile simulation of textile fabrics: design of simulation signals with regard to fingerprint [J ] . Tribology International , 2024 , 191 : 109113 .
KOSHTI A M . Transfer function models for using empirical and physics-based simulation signal response data [C ] // Proceedings of the SPIE Smart Structures+ Nondestructive Evaluation . [ S.l. : s.n. ] , 2024 .
NECHAEV O V , DANILOVSKIY K N , MIKHAYLOV I V . Deep-learning-based simulation and inversion of transient electromagnetic sounding signals in permafrost monitoring problem [J ] . Russ. Geol. Geophys , 2024 , 65 : 1 - 9 .
QIN Z , YE H , LI G Y , et al . Deep learning in physical layer communications [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 93 - 99 .
MAO X , LI Q , XIE H , et al . Least squares generative adversarial networks [C ] // Proceedings of the IEEE International Conference on Computer Vision . Piscataway : IEEE Press , 2017 : 2794 - 2802 .
SAMUEL N , DISKIN T , WIESEL A . Deep MIMO detection [C ] // Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway : IEEE Press , 2017 : 1 - 5 .
YE H , LIANG L , LI G Y , et al . Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 5 ): 3133 - 3143 .
LOEY M , MANOGARAN G , KHALIFA N E M . A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images [J ] . Neural Computing and Applications , 2020 : 1 - 13 .
程风云 , 周金 . 信号增强网络驱动的调制识别 [J ] . 电信科学 , 2024 , 40 ( 4 ): 139 - 150 .
CHENG F Y , ZHOU J . Modulation recognition driven by signal enhancement [J ] . Telecommunications Science , 2024 , 40 ( 4 ): 139 - 150 .
ZHANG Y , HE R , AI B , et al . Generative adversarial networks based digital twin channel modeling for intelligent communication networks [J ] . China Communications , 2023 , 20 ( 8 ): 32 - 43 .
FONTAINE . Industrial UWB localization CIR dataset [J ] . GitHub , 2023 .
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构