浏览全部资源
扫码关注微信
驻马店职业技术学院信息工程学院,河南 驻马店 463003
[ "张锐(1980- ),女,驻马店职业技术学院信息工程学院副教授,主要研究方向为计算机多媒体技术。" ]
收稿日期:2024-07-06,
修回日期:2024-11-18,
纸质出版日期:2024-12-20
移动端阅览
张锐.面向车联网的基于卷积神经网络的入侵检测模型[J].电信科学,2024,40(12):51-62.
ZHANG Rui.An intrusion detection model based on convolution neural network for Internet of vehicles[J].Telecommunications Science,2024,40(12):51-62.
张锐.面向车联网的基于卷积神经网络的入侵检测模型[J].电信科学,2024,40(12):51-62. DOI: 10.11959/j.issn.1000-0801.2024243.
ZHANG Rui.An intrusion detection model based on convolution neural network for Internet of vehicles[J].Telecommunications Science,2024,40(12):51-62. DOI: 10.11959/j.issn.1000-0801.2024243.
为了提高车联网入侵检测的准确率,提出了基于超参数优化卷积神经网络的集成的入侵检测系统(hyper-parameter optimization convolution neural network-based ensemble Intrusion detection system,CNES)模型。CNES模型利用卷积神经网络构建集成学习的基学习器,并利用粒子群优化算法优化卷积神经网络的超参数,进而优化卷积神经网络模型。利用平均法和级联法的集成策略构建集成学习模型,提高检测攻击的准确率。通过车内网络数据集Car-Hacking和车外网络数据集CICIDS2017验证CNES模型的性能。性能分析表明,提出的CNES模型有效地提高了检测网络攻击的性能。在Car-Hacking数据集上,CNES模型的F1值达到100%。
In order to improve the accuracy of detecting the cyber-attacks in Internet of vehicles
hyper-parameter optimization convolution neural network-based ensemble Intrusion detection system (CNES) was proposed. In CNES
the convolution neural network (CNN) was adopted to serve as based learner in ensemble learning. Moreover
the particle swarm optimization was utilized to optimize the hyber-parameters of the CNN
and then CNN model was optimized. Confidence averaging and concatenation techniques were constructed to improve the accuracy. The performance of the proposed CNES was measured based on Car-Hacking and CICIDS2017 datasets. This shows the effectiveness of the proposed CNES for cyber-attack detection. The CNES achieves F1 score of 100% on Car-Hacking dataset.
朱冰 , 张培兴 , 刘斌 , 等 . 基于自然驾驶数据的自动驾驶汽车安全性评价方法 [J ] . 中国公路学报 , 2022 , 35 ( 7 ): 283 - 291 .
ZHU B , ZHANG P X , LIU B , et al . Safety evaluation method of automated vehicle based on naturalistic driving data [J ] . China Journal of Highway and Transport , 2022 , 35 ( 7 ): 283 - 291 .
孙扬威 , 戚湧 . 基于聚类混合采样与PSO-Stacking的车载CAN入侵检测方法 [J ] . 计算机工程 , 2023 , 49 ( 1 ): 138 - 145 .
SUN Y W , QI Y . Intrusion detection method for in-vehicle CAN based on cluster mixed sampling and PSO-stacking [J ] . Computer Engineering , 2023 , 49 ( 1 ): 138 - 145 .
宋秀兰 , 李洋阳 , 何德峰 . 外部干扰和随机DoS攻击下的网联车安全H ∞ 队列控制 [J ] . 自动化学报 , 2024 , 50 ( 2 ): 348 - 355 .
SONG X L , LI Y Y , HE D F . Secure H ∞ platooning control for connected vehicles subject to external disturbance and random DoS attacks [J ] . Acta Automatica Sinica , 2024 , 50 ( 2 ): 348 - 355 .
崔英祥 , 张幽彤 , 魏洪乾 . 基于样本熵的车载CAN网络入侵检测 [J ] . 汽车工程 , 2023 , 45 ( 7 ): 1184 - 1191 .
CUI Y X , ZHANG Y T , WEI H Q . An intrusion detection system for in-vehicle CAN network based on sample entropy [J ] . Automotive Engineering , 2023 , 45 ( 7 ): 1184 - 1191 .
张瑶 , 卢焕章 , 王珏 , 等 . 短时记忆与CenterTrack的车辆多目标跟踪 [J ] . 中国图象图形学报 , 2023 , 28 ( 10 ): 3107 - 3122 .
ZHANG Y , LU H Z , WANG J , et al . Short-term memory and CenterTrack based vehicle-related multi-target tracking method [J ] . Journal of Image and Graphics , 2023 , 28 ( 10 ): 3107 - 3122 .
MEHEDI S T , ANWAR A , RAHMAN Z , et al . Deep transfer learning based intrusion detection system for electric vehicular networks [J ] . Sensors , 2021 , 21 ( 14 ): 4736 .
HOSSAIN M D , INOUE H , OCHIAI H , et al . An effective in-vehicle CAN bus intrusion detection system using CNN deep learning approach [C ] // Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference . Piscataway : IEEE Press , 2020 : 1 - 6 .
SONG H M , WOO J , KIM H K . In-vehicle network intrusion detection using deep convolutional neural network [J ] . Vehicular Communications , 2020 , 21 : 100198 .
ROSAY A , CARLIER F , LEROUX P . Feed-forward neural network for network intrusion detection [C ] // 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) . Piscataway : IEEE Press , 2020 : 1 - 6 .
ROS S R , CAR V S . An improving intrusion detection model based on novel CNN technique using recent CIC-IDS datasets [C ] // 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT) . Piscataway : IEEE Press , 2024 : 1 - 6 .
LEONARDO M M , CARVALHO T J , REZENDE E , et al . Deep feature-based classifiers for fruit fly identification (Diptera: Tephritidae) [C ] // 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) . Piscataway : IEEE Press , 2018 : 41 - 47 .
岳洋 , 张维 , 苗耀锋 . 基于自适应调整VGG16模型的乳腺癌风险预测 [J ] . 信息技术 , 2024 , 48 ( 5 ): 138 - 143 .
YUE Y , ZHANG W , MIAO Y F . A novel risk prediction based on adaptive adjustment VGG16 for breast cancer [J ] . Information Technology , 2024 , 48 ( 5 ): 138 - 143 .
王钰帏 , 王雷 , 郭新萍 , 等 . 基于复剪切波变换与VGG19模型的医学图像融合方法 [J ] . 山东理工大学学报(自然科学版) , 2024 , 38 ( 4 ): 53 - 60 .
WANG Y W , WANG L , GUO X P , et al . The medical image fusion method based on the complex shearlet transform and the VGG19 model [J ] . Journal of Shandong University of Technology (Natural Science Edition) , 2024 , 38 ( 4 ): 53 - 60 .
张会影 , 圣文顺 , 金鑫 . 基于深度流形学习的人脸年龄识别 [J ] . 无线电通信技术 , 2024 , 50 ( 4 ): 799 - 806 .
ZHANG H Y , SHENG W S , JIN X . Facial age recognition based on deep manifold learning [J ] . Radio Communications Technology , 2024 , 50 ( 4 ) : 799 - 806 .
张琦 , 区锦锋 , 周华英 . 基于Xception与迁移学习的中药饮片图像识别研究 [J ] . 现代电子技术 , 2024 , 47 ( 3 ): 29 - 33 .
ZHANG Q , OU J F , ZHOU H Y . Research on traditional Chinese medicine piece image recognition based on Xception and transfer learning [J ] . Modern Electronics Technique , 2024 , 47 ( 3 ): 29 - 33 .
李长文 , 李鹏 , 丁华 . 基于GAF-inceptionResNet的齿轮箱故障诊断 [J ] . 机械传动 , 2022 , 46 ( 6 ): 134 - 140 .
LI C W , LI P , DING H . Gearbox fault diagnosis based on GAF-inceptionResNet [J ] . Journal of Mechanical Transmission , 2022 , 46 ( 6 ): 134 - 140 .
何佳星 , 郑南山 , 丁锐 , 等 . 粒子群优化卷积神经网络GNSS-IR土壤湿度反演方法 [J ] . 测绘学报 , 2023 , 52 ( 8 ): 1286 - 1297 .
HE J X , ZHENG N S , DING R , et al . A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization [J ] . Acta Geodaetica et Cartographica Sinica , 2023 , 52 ( 8 ): 1286 - 1297 .
MOUBAYED A , SHAMI A , HEIDARI P , et al . Edge-enabled V2X service placement for intelligent transportation systems [J ] . IEEE Transactions on Mobile Computing , 2021 , 20 ( 4 ): 1380 - 1392 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构