浏览全部资源
扫码关注微信
车联网技术创新与测试评价工业和信息化部重点实验室(中国信息通信研究院), 北京 100083
[ "鲍叙言(1989- ),男,博士,车联网技术创新与测试评价工业和信息化部重点实验室(中国信息通信研究院)高级工程师,主要研究方向为车联网、车路协同、融合感知领域的相关政策、产业、标准和前沿技术等。" ]
[ "龚正(1992- ),男,博士,车联网技术创新与测试评价工业和信息化部重点实验室(中国信息通信研究院)工程师,CEng特许工程师,主要研究方向为多源融合定位与感知、路侧感知系统、人工智能大模型与类脑计算等。" ]
[ "李伯雄(1995- ),男,车联网技术创新与测试评价工业和信息化部重点实验室(中国信息通信研究院)工程师,主要从事车联网和智能网联汽车领域技术、标准、测试等工作。" ]
[ "余冰雁(1989- ),男,博士,车联网技术创新与测试评价工业和信息化部重点实验室(中国信息通信研究院)副主任、高级工程师,主要从事车联网边缘计算、路侧感知、云控平台等领域的政策与产业研究、技术标准研制等工作。" ]
收稿日期:2024-09-26,
修回日期:2024-11-27,
纸质出版日期:2024-12-20
移动端阅览
鲍叙言,龚正,李伯雄等.车路协同路侧感知系统的关键技术与测试验证[J].电信科学,2024,40(12):30-37.
BAO Xuyan,GONG Zheng,LI Boxiong,et al.Key technology and validation of roadside sensing system for vehicle-road cooperation[J].Telecommunications Science,2024,40(12):30-37.
鲍叙言,龚正,李伯雄等.车路协同路侧感知系统的关键技术与测试验证[J].电信科学,2024,40(12):30-37. DOI: 10.11959/j.issn.1000-0801.2024248.
BAO Xuyan,GONG Zheng,LI Boxiong,et al.Key technology and validation of roadside sensing system for vehicle-road cooperation[J].Telecommunications Science,2024,40(12):30-37. DOI: 10.11959/j.issn.1000-0801.2024248.
车路协同路侧感知系统是发展“车路云一体化”、实施交通基础设施数字化转型升级的重要一环。立足当下应用需求和产业进展,介绍了车路协同路侧感知系统的关键技术、标准化现状,以及研究团队研发的测试工具及开展测试验证的情况。测试验证结果展现出部分已部署的路侧感知系统仍存在较大技术爬坡空间,且在测试工具的辅助下可大幅提升系统性能,同时也验证了关键技术的必要性、已有标准的可用性、测试工具的高价值。
Vehicular-road collaborative roadside sensing systems are a crucial part of developing “integrated vehicular-road-cloud systems” and implementing the digital transformation and upgrading of transportation infrastructure. Based on current application needs and industrial progress
key technologies and the standardization status of the system were analyzed
and the testing tools and verification results developed by the research team were presented.The results of testing and verification show that some deployed roadside sensing systems still have a significant technological gap to be fulfilled
and with the aid of testing tools
system performance can be greatly improved. The necessity of key technologies
the usability of existing standards
and the high value of testing tools have all been confirmed.
ZHANG R S , ZOU Z X , SHEN S Y , et al . Design, implementation, and evaluation of a roadside cooperative perception system [J ] . Transportation Research Record: Journal of the Transportation Research Board , 2022 , 2676 ( 11 ): 273 - 284 .
GONG Z , XUE W Y , LIU Z A , et al . Design of a reconfigurable multi-sensor testbed for autonomous vehicles and ground robots [C ] // 2019 IEEE International Symposium on Circuits and Systems (ISCAS) . Piscataway : IEEE Press , 2019 : 1 - 5 .
吴维一 . 激光雷达及多传感器融合技术应用研究 [D ] . 长沙 : 国防科学技术大学 , 2006 .
WU W Y . Research on application of lidar and multi-sensor fusion technology [D ] . Changsha : National University of Defense Technology , 2006 .
彭湃 , 耿可可 , 殷国栋 , 等 . 基于传感器融合里程计的相机与激光雷达自动重标定方法 [J ] . 机械工程学报 , 2021 , 57 ( 20 ): 206 - 214 .
PENG P , GENG K K , YIN G D , et al . Automatic recalibration of camera and LiDAR using sensor fusion odometry [J ] . Journal of Mechanical Engineering , 2021 , 57 ( 20 ): 206 - 214 .
LI B Y , OUYANG W L , SHENG L , et al . G S3D : an efficient 3D object detection framework for autonomous driving [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2019: 1019 - 1028 .
ZHANG J C , WEN W S , HUANG F , et al . GNSS-RTK adaptively integrated with LiDAR/IMU odometry for continuously global positioning in urban canyons [J ] . Applied Sciences , 2022 , 12 ( 10 ): 5193 .
IEEE standard specification format guide and test procedure for single-axis laser gyros [C ] // IEEE Std 647 - 1995 . Piscataway : IEEE Press , 1996 : 1 - 88 .
REHDER J , NIKOLIC J , SCHNEIDER T , et al . Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes [C ] // 2016 IEEE International Conference on Robotics and Automation (ICRA) . Piscataway : IEEE Press , 2016 : 4304 - 4311 .
张鹏 , 雷为民 , 赵新蕾 , 等 . 跨摄像头多目标跟踪方法综述 [J ] . 计算机学报 , 2024 , 47 ( 2 ): 287 - 309 .
ZHANG P , LEI W M , ZHAO X L , et al . A survey on multi-target multi-camera tracking methods [J ] . Chinese Journal of Computers , 2024 , 47 ( 2 ): 287 - 309 .
CHOUDHURI A , CHOWDHARY G , SCHWING A G . Assignment-space-based multi-object tracking and segmentation [C ] // 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2021 : 13578 - 13587 .
HUANG K L , SHI B T , LI X , et al . Multi-modal sensor fusion for auto driving perception: a survey [J ] . ArXiv e-Prints , 2022 : arXiv: 2202.02703 .
WEON I S , LEE S G . Environment recognition based on multi-sensor fusion for autonomous driving vehicles [J ] . Journal of Institute of Control, Robotics and Systems , 2019 , 25 ( 2 ): 125 - 131 .
杜豫川 , 都州扬 , 师钰鹏 , 等 . 路侧感知车辆轨迹数据质量智能评估方法 [J ] . 中国公路学报 , 2021 , 34 ( 7 ): 164 - 176 .
DU Y C , DU Z Y , SHI Y P , et al . An intelligent quality assessment method for vehicle trajectory from roadside perception [J ] . China Journal of Highway and Transport , 2021 , 34 ( 7 ): 164 - 176 .
中国通信标准化协会 . 车路协同 路侧感知系统技术要求及测试方法 : YD/T 4770-2024 [S ] . 2024 .
China Communications Standards Association . Vehicle-infrastructure cooperation—Technical requirements and test methods of roadside sensing system : YD/T 4770-2024 [S ] . 2024 .
全国智能运输系统标准化技术委员会 . 车路协同系统智能路侧协同控制设备技术要求和测试方法 : GB/T 44417-2024 [S ] . 2024 .
National Technical Committee 268 on Intelligent Transport Systems of Standardization Administration of China. Technical requirements and test method for roadside intelligent cooperative control device in cooperative vehicle-infrastructure system : GB/T 44417-2024 [S ] . 2024 .
ITU-T SG20. A functional architecture of roadside multi-sensor data fusion systems for autonomous vehicles:ITU-T Y.4487 [S ] . 2024 .
ITU-T SG16 . Framework and requirements of cooperative driving environment perception for connected automated vehicles: ITU-T F. CAV-CDP [S ] . 2024 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构