浏览全部资源
扫码关注微信
湖州师范学院信息工程学院, 浙江 湖州 313000
[ "徐会彬(1982- ),男,博士,湖州师范学院信息工程学院讲师、硕士生导师,主要研究方向为VANET安全、路由技术。" ]
[ "方龙(2000- ),男,湖州师范学院信息工程学院硕士生,主要研究方向为车联网安全及入侵检测。" ]
[ "张莎(2002- ),女,湖州师范学院信息工程学院在读,主要研究方向为电子信息、计算机应用技术。" ]
收稿日期:2024-10-18,
修回日期:2024-11-08,
纸质出版日期:2024-12-20
移动端阅览
徐会彬,方龙,张莎.车联网中基于stacking集成学习的攻击检测模型[J].电信科学,2024,40(12):38-50.
XU Huibin,FANG Long,ZHANG Sha.Attack detection model based on stacking ensemble learning for Internet of vehicles[J].Telecommunications Science,2024,40(12):38-50.
徐会彬,方龙,张莎.车联网中基于stacking集成学习的攻击检测模型[J].电信科学,2024,40(12):38-50. DOI: 10.11959/j.issn.1000-0801.2024257.
XU Huibin,FANG Long,ZHANG Sha.Attack detection model based on stacking ensemble learning for Internet of vehicles[J].Telecommunications Science,2024,40(12):38-50. DOI: 10.11959/j.issn.1000-0801.2024257.
由于无线网络的开放性,车联网容易受到网络攻击,如拒绝服务、模糊和欺骗
攻击。为此,提出融合随机森林(random forest,RF)和梯度提升决策树(gradient boosting decision tree,GBDT)的堆叠(stacking)的入侵检测(RG-IDS)模型。首先,RG-IDS模型利用自适应合成采样(adaptive synthetic sampling,ADASYN)算法对不平衡类别的数据样本进行近邻采样,进而生成更多同类别的近似样本,形成相对平衡的样本数据。其次,RG-IDS模型利用GBDT评估特征的重要性,并选择具有重要特征的样本数据,建立轻量级分类器。最后,RG-IDS采用基于
k
折交叉验证的堆叠方法,降低过拟合的概率。将RF、GBDT和LightGBM分类器作为基学习器。采用数据集CICIDS 2017和NSL-KDD对RG-IDS模型进行实验测试。实验结果表明,RG-IDS模型可实现较高的F1值。
Due to openness of wireless communication
Internet of vehicles (IoV) is vulnerable to many cyber-attacks such as denial of service
spoofing and fuzzy attacks. Therefore
random forest (RF) and gradient boosting decision tree-based stacking intrusion detection (RF-IDS) model was proposed. Firstly
the adaptive synthetic sampling (ADASYN) algorithm was adopted to generate more similar samples through the nearest neighbor sampling strategy in order to balance the training samples of different categories
and form a relatively symmetric dataset. Secondly
GBDT was used to evaluate the importance of features and select sample data with important features to build a lightweight classifier. Finally
the
k
-fold cross-validation stacking method was used to reduce the probability of overfitting. RF
GBDT and LightGBM classifiers serve were used as base-learner. The RG-IDS model was tested by CICIDS 2017 and NSL-KDD datasets. The experimental results demonstrate that RG-IDS model can achieve a higher F1-score.
江荣旺 , 魏爽 , 龙草芳 , 等 . 基于增量学习的车联网恶意位置攻击检测研究 [J ] . 信息安全研究 , 2024 , 10 ( 3 ): 268 - 276 .
JIANG R W , WEI S , LONG C F , et al . Research on location attack detection of VANET based on incremental learning [J ] . Journal of Information Security Research , 2024 , 10 ( 3 ): 268 - 276 .
于天琪 , 胡剑凌 , 金炯 , 等 . 基于移动边缘计算的车载CAN网络入侵检测方法 [J ] . 计算机科学 , 2021 , 48 ( 1 ): 34 - 39 .
YU T Q , HU J L , JIN J , et al . Mobile edge computing based in-vehicle CAN network intrusion detection method [J ] . Computer Science , 2021 , 48 ( 1 ): 34 - 39 .
银鹰 , 周志洪 , 姚立红 . 基于LSTM的CAN入侵检测模型研究 [J ] . 信息网络安全 , 2022 , 22 ( 12 ): 57 - 66 .
YIN Y , ZHOU Z H , YAO L H . Research on LSTM-based CAN intrusion detection model [J ] . Netinfo Security , 2022 , 22 ( 12 ): 57 - 66 .
宋秀兰 , 李洋阳 , 何德峰 . 外部干扰和随机DoS攻击下的网联车安全H ∞ 队列控制 [J ] . 自动化学报 , 2024 , 50 ( 2 ): 348 - 355 .
SONG X L , LI Y Y , HE D F . Secure H ∞ platooning control for connected vehicles subject to external disturbance and random DoS attacks [J ] . Acta Automatica Sinica , 2024 , 50 ( 2 ): 348 - 355 .
周漫 . 车联网中基于行为分析的攻击检测方法研究 [D ] . 武汉 : 华中科技大学 , 2022 .
ZHOU M . Research on attack detection method based on behavior analysis in vehicle networking [D ] . Wuhan : Huazhong University of Science and Technology , 2022 .
周建华 , 侯英哲 , 吕臣臣 , 等 . 智能网联汽车安全防护技术研究综述 [J ] . 武汉大学学报(理学版) , 2023 , 69 ( 5 ): 617 - 635 .
ZHOU J H , HOU Y Z , LYU C C , et al . A review on security and defense technologies for intelligent connected vehicle [J ] . Journal of Wuhan University (Natural Science Edition) , 2023 , 69 ( 5 ): 617 - 635 .
赵丽 , 孙敏 . 基于CAN的现代车辆入侵检测 [J ] . 计算机应用与软件 , 2024 , 41 ( 2 ): 328 - 332 .
ZHAO L , SUN M . Modern vehicle intrusion detection based on can [J ] . Computer Applications and Software , 2024 , 41 ( 2 ): 328 - 332 .
刘涛涛 , 付钰 , 王坤 , 等 . 基于VAE-CWGAN和特征统计重要性融合的网络入侵检测方法 [J ] . 通信学报 , 2024 , 45 ( 2 ): 54 - 67 .
LIU T T , FU Y , WANG K , et al . Network intrusion detection method based on VAE-CWGAN and fusion of statistical importance of feature [J ] . Journal on Communications , 2024 , 45 ( 2 ): 54 - 67 .
冯光升 , 蒋舜鹏 , 胡先浪 , 等 . 面向物联网的入侵检测技术研究新进展 [J ] . 信息网络安全 , 2024 , 24 ( 2 ): 167 - 178 .
FENG G S , JIANG S P , HU X L , et al . New research progress on intrusion detection techniques for the Internet of Things [J ] . Netinfo Security , 2024 , 24 ( 2 ): 167 - 178 .
DORIGUZZI-CORIN R , MILLAR S , SCOTT-HAYWARD S , et al . Lucid: a practical, lightweight deep learning solution for DDoS attack detection [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 2 ): 876 - 889 .
CIL A E , YILDIZ K , BULDU A . Detection of DDoS attacks with feed forward based deep neural network model [J ] . Expert Systems with Applications , 2021 , 169 : 114520 .
魏明军 , 李凤 , 刘亚志 , 等 . 基于改进WGAN-GP和ResNet的车联网入侵检测方法 [J ] . 郑州大学学报(工学版) , 2024 , 45 ( 4 ): 30 - 37 .
WEI M J , LI F , LIU Y Z , et al . An intrusion detection method for Internet of vehicles based on improved WGAN-GP and ResNet [J ] . Journal of Zhengzhou University (Engineering Science) , 2024 , 45 ( 4 ): 30 - 37 .
方介泼 , 陶重犇 . 应对零日攻击的混合车联网入侵检测系统 [J ] . 计算机应用 , 2024 , 44 ( 9 ): 2763 - 2769 .
FANG J P , TAO C B . Hybrid internet of vehicles intrusion detection system for zero-day attacks [J ] . Journal of Computer Applications , 2024 , 44 ( 9 ): 2763 - 2769 .
王军 , 司昌馥 , 王凯鹏 , 等 . 基于集成学习和改进的PSO-GA算法特征选择的入侵检测方法 [J ] . 吉林大学学报(工学版) , 2024 : 1 - 9 .
WANG J , SI C F , WANG K P , et al . Intrusion detection method based on ensemble learning and improved PSO-GA feature selection [J ] . Journal of Jilin University (Engineering and Technology Edition) , 2024 : 1 - 9 .
BHATI B S , CHUGH G , AL-TURJMAN F , et al . An improved ensemble based intrusion detection technique usingXGBoost [J ] . Transactions on Emerging Telecommunications Technologies , 2021 , 32 ( 6 ): 4076 - 4090 .
YANG L , MOUBAYED A , HAMIEH I , et al . Tree-based intelligent intrusion detection system in Internet of vehicles [C ] // Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2019 : 1 - 6 .
ELMASRY W , AKBULUT A , ZAIM A H . Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic [J ] . Computer Networks , 2020 , 168 : 107042 .
陈虹 , 姜朝议 , 金海波 , 等 . 融合改进堆叠编码器和多层BiLSTM的入侵检测模型 [J ] . 计算机工程与应用 , 2024 : 1 - 12 .
CHEN H , JIANG C Y , JIN H B , et al . Fusion of improved stacked encoder and multi-layer BiLSTM for intrusion detection model [J ] . Computer Engineering and Applications , 2024 : 1 - 12 .
周杰英 , 贺鹏飞 , 邱荣发 , 等 . 融合随机森林和梯度提升树的入侵检测研究 [J ] . 软件学报 , 2021 , 32 ( 10 ): 3254 - 3265 .
ZHOU J Y , HE P F , QIU R F , et al . Research on intrusion detection based on random forest and gradient boosting tree [J ] . Journal of Software , 2021 , 32 ( 10 ): 3254 - 3265 .
王秀玉 , 吴晓鸰 , 冯永晋 . 融合过-欠采样与GAN的网络入侵检测方法 [J ] . 小型微型计算机系统 , 2024 : 1 - 8 .
WANG X Y , WU X L , FENG Y J . Network intrusion detection method combining over-undersampling with GAN [J ] . Journal of Chinese Computer Systems , 2024 : 1 - 8 .
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构