浏览全部资源
扫码关注微信
1.宁波大学信息科学与工程学院,浙江 宁波 315211
2.宁波艾欧迪互联科技有限公司,浙江 宁波 315021
3.北京邮电大学信息与通信工程学院,北京 100876
[ "高文轩,(1998- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为车联网系统的资源管理和性能优化。" ]
[ "杨新杰(1971- ),男,宁波大学信息科学与工程学院教授、硕士生导师,主要研究方向为下一代移动通信系统架构、移动物联网接入技术、协作中继网络性能等。" ]
[ "杨家智(2001- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为强化学习、车联网、边缘计算与资源分配。" ]
[ "马楠(1979- ),男,北京邮电大学信息与通信工程学院教授,北京无线通信测试技术重点实验室主任,主要研究方向为无线通信理论、测试技术和大数据应用。" ]
收稿日期:2024-12-01,
修回日期:2025-01-01,
纸质出版日期:2025-04-20
移动端阅览
高文轩,杨新杰,杨家智等.时延约束与能量感知的车辆边缘计算协同资源分配与任务卸载[J].电信科学,2025,41(04):143-163.
GAO Wenxuan,YANG Xinjie,YANG Jiazhi,et al.Joint resource allocation and task offloading for latency constraint and energy-sensing vehicular edge computing[J].Telecommunications Science,2025,41(04):143-163.
高文轩,杨新杰,杨家智等.时延约束与能量感知的车辆边缘计算协同资源分配与任务卸载[J].电信科学,2025,41(04):143-163. DOI: 10.11959/j.issn.1000-0801.2025049.
GAO Wenxuan,YANG Xinjie,YANG Jiazhi,et al.Joint resource allocation and task offloading for latency constraint and energy-sensing vehicular edge computing[J].Telecommunications Science,2025,41(04):143-163. DOI: 10.11959/j.issn.1000-0801.2025049.
在车联网中,计算密集型和时延敏感型车载应用的出现对车辆的计算能力和处理速度提出了挑战。为此,车辆边缘计算(vehicular edge computing,VEC)应运而生,它通过利用周边车辆和路侧单元(roadside unit,RSU)的空闲计算资源来辅助车辆进行联合任务计算。然而,如何有效管理VEC系统的计算资源以实现系统性能优化,仍是一个亟待解决的问题。基于此,研究VEC系统中的协同资源分配和任务卸载问题,通过车辆到基础设施(vehicle-to-infrastructure,V2I)和车辆到车辆(vehicle-to-vehicle,V2V)的通信模式来实现部分任务的卸载,同时协同优化选择决策、任务卸载比例,以及车辆和RSU的计算资源分配,在保证任务完成的前提下最小化系统总能耗。由于该问题是一个NP难的混合整数非线性规划问题,将原问题解耦成多个子问题,并提出一种融合蚁群系统(ant colony system,ACS)、拉格朗日乘子和梯度法的优化方案。仿真结果表明,所提方案相较对比方案在降低任务未完成率和系统总能耗方面展现出更优越的性能。
In the Internet of vehicles
the emergence of computationally intensive and latency-sensitive vehicular applications poses great challenges for computing time and power consumption. Vehicle edge computing (VEC) is therefore proposed to take advantages of the computing capabilities of vehicles and roadside unit (RSU). However
the efficient resource management for VEC systems to achieve optimised performance remains unsolved. Based on this
the issue of collaborative resource allocation and task offloading in the VEC system was studied
with partial tasks being offloaded through vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication modes. At the same time
the selection decisions
task offloading ratios
and the allocation of computing resources among vehicles and RSUs were collaboratively optimized
with the aim of minimizing the total system energy consumption while ensuring task completion. As the proble was a NP-hard mixed-integer nonlinear programming problem
the optimization problem was decoupled into multiple subproblems
and subsequently solved by using ant colony system (ACS)
Lagrange multipliers and gradient method. Extensive simulation results demonstrate that the proposed scheme significantly outperforms the benchmarking algorithms in terms of task incomplete rate and overall system energy consumption.
ZHUANG W H , YE Q , LYU F , et al . SDN/NFV-empowered future IoV with enhanced communication, computing, and caching [J ] . Proceedings of the IEEE , 2020 , 108 ( 2 ): 274 - 291 .
WANG J , FENG D Q , ZHANG S L , et al . Computation offloading for mobile edge computing enabled vehicular networks [J ] . IEEE Access , 2019 ( 7 ): 62624 - 62632 .
CHEN X F , ZHANG H G , WU C , et al . Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning [J ] . IEEE Internet of Things Journal , 2018 , 6 ( 3 ): 4005 - 4018 .
LIU L , CHEN C , PEI Q Q , et al . Vehicular edge computing and networking: a survey [J ] . Mobile Networks and Applications , 2021 , 26 ( 3 ): 1145 - 1168 .
WANG Y P , LANG P , TIAN D X , et al . A game-based computation offloading method in vehicular multiaccess edge computing networks [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 6 ): 4987 - 4996 .
DAI Y Y , XU D , MAHARJAN S , et al . Joint load balancing and offloading in vehicular edge computing and networks [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 3 ): 4377 - 4387 .
SUN J N , GU Q , ZHENG T , et al . Joint optimization of computation offloading and task scheduling in vehicular edge computing networks [J ] . IEEE Access , 2020 ( 8 ): 10466 - 10477 .
ZHAO J H , LI Q P , GONG Y , et al . Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 8 ): 7944 - 7956 .
XU X L , SHEN B W , DING S , et al . Service offloading with deep Q-network for digital twinning-empowered Internet of vehicles in edge computing [J ] . IEEE Transactions on Industrial Informatics , 2022 , 18 ( 2 ): 1414 - 1423 .
ZHANG K , ZHU Y X , LENG S P , et al . Deep learning empowered task offloading for mobile edge computing in urban informatics [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 5 ): 7635 - 7647 .
ZHAN W H , LUO C B , WANG J , et al . Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 6 ): 5449 - 5465 .
SHI J M , DU J , WANG J , et al . Distributed V2V computation offloading based on dynamic pricing using deep reinforcement learning [C ] // Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2020 : 1 - 6 .
SUN Y X , GUO X Y , SONG J H , et al . Adaptive learning-based task offloading for vehicular edge computing systems [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 4 ): 3061 - 3074 .
CHEN C , CHEN L L , LIU L , et al . Delay-optimized V2V-based computation offloading in urban vehicular edge computing and networks [J ] . IEEE Access , 2020 ( 8 ): 18863 - 18873 .
HOU X W , REN Z Y , WANG J J , et al . Reliable computation offloading for edge-computing-enabled software-defined IoV [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 8 ): 7097 - 7111 .
ZHANG H B , WANG Z X , LIU K J . V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks [J ] . China Communications , 2020 , 17 ( 5 ): 266 - 283 .
FAN W H , SU Y , LIU J , et al . Joint task offloading and resource allocation for vehicular edge computing based on V2I and V2V modes [J ] . IEEE Transactions on Intelligent Transportation Systems , 2023 , 24 ( 4 ): 4277 - 4292 .
LIU J X , WANG Y T , ZHANG W , et al . A novel offloading and resource allocation scheme for time-critical tasks in heterogeneous Internet of vehicles [C ] // Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON) . Piscataway : IEEE Press , 2023 : 1 - 7 .
HAZARIKA B , SINGH K , BISWAS S , et al . Multi-agent DRL-based task offloading in multiple RIS-aided IoV networks [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 1 ): 1175 - 1190 .
NGUYEN L D , TUAN H D , DUONG T Q . Energy-efficient signalling in QoS constrained heterogeneous networks [J ] . IEEE Access , 2016 ( 4 ): 7958 - 7966 .
The Institute of Electrical Engineers . Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments: IEEE 802.11 [S ] . Piscataway : IEEE Press , 2010 .
REN C L , ZHANG G A , GU X H , et al . Computing offloading in vehicular edge computing networks: full or partial offloading? [C ] // Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC) . Piscataway : IEEE Press , 2022 : 693 - 698 .
ALNAGAR Y , HOSNY S , EL-SHERIF A A . Towards mobility-aware proactive caching for vehicular ad hoc networks [C ] // Proceedings of the 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW) . Piscataway : IEEE Press , 2019 : 1 - 6 .
YU Z X , HU J , MIN G Y , et al . Mobility-aware proactive edge caching for connected vehicles using federated learning [J ] . IEEE Transactions on Intelligent Transportation Systems , 22 ( 8 ): 5341 - 5351 .
BI S Z , ZHANG Y J . Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 6 ): 4177 - 4190 .
WANG Y T , SHENG M , WANG X J , et al . Mobile-edge computing: partial computation offloading using dynamic voltage scaling [J ] . IEEE Transactions on Communications , 2016 , 64 ( 10 ): 4268 - 4282 .
殷人昆 , 吴阳 , 张晶炜 . 蚁群算法解决指派问题的研究和应用 [J ] . 计算机工程与科学 , 2008 , 30 ( 4 ): 43 - 45, 112 .
YIN R K , WU Y , ZHANG J W . Research and application of the ant colony algorithm in the assignment problem [J ] . Computer Engineering & Science , 2008 , 30 ( 4 ): 43 - 45, 112 .
DENG X Y , YU W L , ZHANG L M . A new ant colony optimization with global exploring capability and rapid convergence [C ] // Proceedings of the 10th World Congress on Intelligent Control and Automation . Piscataway : IEEE Press , 2012 : 579 - 583 .
YU Y , ZHANG J , LETAIEF K B . Joint subcarrier and CPU time allocation for mobile edge computing [C ] // Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM) . Piscataway : IEEE Press , 2016 : 1 - 6 .
WANG X , NING Z , GUO S , et al . Imitation learning enabled task scheduling for online vehicular edge computing [J ] . IEEE Transactions on Mobile Computing , 2020 , 21 ( 2 ): 598 - 611 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构