浏览全部资源
扫码关注微信
电子科技大学信息与通信工程学院,四川 成都 611731
[ "赵鹏程(1999- ),男,电子科技大学信息与通信工程学院博士生,主要研究方向为无人蜂群协同感知、资源分配、机器学习等。" ]
[ "李天扬(1997- ),女,电子科技大学信息与通信工程学院博士生,主要研究方向为无线通信网络、无人机自组网、多智能体强化学习、数字孪生、网络演算、空中计算等。" ]
[ "冷甦鹏(1973- ),男,电子科技大学信息与通信工程学院教授、博士生导师,主要研究方向为物联网、车联网、新一代宽带无线网络、无线自组织网络、智能交通信息系统的资源管理、介质访问控制、路由、组网与互联、智能算法理论及技术应用等。" ]
[ "熊凯(1991- ),男,电子科技大学信息与通信工程学院副研究员,主要研究方向为无人机编队资源分配、移动边缘计算和机器学习。" ]
收稿日期:2024-12-01,
修回日期:2025-02-19,
纸质出版日期:2025-03-20
移动端阅览
赵鹏程,李天扬,冷甦鹏等.面向协同感知的无人蜂群智能资源调度方案[J].电信科学,2025,41(03):17-26.
ZHAO Pengcheng,LI Tianyang,LENG Supeng,et al.Intelligent resource scheduling scheme for UAV swarm collaborative sensing[J].Telecommunications Science,2025,41(03):17-26.
赵鹏程,李天扬,冷甦鹏等.面向协同感知的无人蜂群智能资源调度方案[J].电信科学,2025,41(03):17-26. DOI: 10.11959/j.issn.1000-0801.2025050.
ZHAO Pengcheng,LI Tianyang,LENG Supeng,et al.Intelligent resource scheduling scheme for UAV swarm collaborative sensing[J].Telecommunications Science,2025,41(03):17-26. DOI: 10.11959/j.issn.1000-0801.2025050.
随着低空经济的蓬勃发展,无人机在监测和感知领域得到广泛应用。然而,无人机有限的机载计算资源制约了感知数据的高效处理。此外,协同感知中产生的观测区域重叠进一步增加了冗余的计算负担。同时,无人机网络的高动态拓扑和节点资源的波动性大幅加剧了资源协同的难度。针对上述挑战,提出了一种面向协同感知的无人蜂群智能资源调度方案,通过自适应感知模式、分步卸载计算任务和竞价带宽策略,实现了通信、感知、计算(通感算)异构资源协同互补,提升协同感知效率。采用基于注意力机制的多智能体强化学习算法求解优化问题,以增强智能体提取环境关键特征的能力。仿真结果表明,与基准方案相比,该方案不仅有效降低了感知任务的执行时间,还提高了计算资源的利用率。
With the rapid development of the low-altitude economy
unmanned aerial vehicles (UAV) have been widely applied in monitoring and sensing tasks. However
the limited onboard computing resources of UAV constrain the efficient processing of sensing data. Moreover
overlapping observation areas in collaborative sensing introduce additional computational redundancy. Meanwhile
the highly dynamic network topology and fluctuating node resources significantly increase the complexity of resource coordination. To address these challenges
an intelligent resource scheduling scheme for UAV swarm collaborative sensing was proposed. Adaptive sensing mode selection
stepwise computation offloading
and competitive bandwidth allocation were integrated to achieve heterogeneous resource coordination across communication
sensing
and computation (CSC)
thereby enhancing collaborative sensing efficiency. Furthermore
a multi-agent reinforcement learning (MARL) algorithm with an attention mechanism was employed to solve the optimization problem
enabling agents to extract critical environmental features more effectively. Simulation results demonstrate that
compared with benchmark schemes
the proposed scheme significantly reduces the execution time of sensing tasks while improving computational resource utilization.
MENG K T , WU Q Q , XU J , et al . UAV-enabled integrated sensing and communication: opportunities and challenges [J ] . IEEE Wireless Communications , 2024 , 31 ( 2 ): 97 - 104 .
XIONG K , LENG S P , CHEN L Y , et al . RIS-aided trajectory optimization in layered urban air mobility [J ] . IEEE Internet of Things Journal , 2025 , 12 ( 2 ): 2188 - 2202 .
XIONG K , YU H Q , LENG S P , et al . Multi-hop RIS-aided learning model sharing for urban air mobility [J ] . IEEE Transactions on Intelligent Transportation Systems , 2024 ( 99 ): 1 - 13 .
ITKIN M , KIM M , PARK Y . Development of cloud-based UAV monitoring and management system [J ] . Sensors , 2016 , 16 ( 11 ): 1913 .
CHEN X , FENG Z Y , WEI Z Q , et al . Performance of joint sensing-communication cooperative sensing UAV network [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 12 ): 15545 - 15556 .
YIN N H , LIU R A , ZENG B B , et al . A review: UAV-based remote sensing [J ] . IOP Conference Series: Materials Science and Engineering , 2019 , 490 : 062014 .
LI B , LIU W S , XIE W C , et al . Adaptive digital twin for UAV-assisted integrated sensing, communication, and computation networks [J ] . IEEE Transactions on Green Communications and Networking , 2023 , 7 ( 4 ): 1996 - 2009 .
CAI T , YANG Z H , CHEN Y F , et al . Cooperative data sensing and computation offloading in UAV-assisted crowdsensing with multi-agent deep reinforcement learning [J ] . IEEE Transactions on Network Science and Engineering , 2022 , 9 ( 5 ): 3197 - 3211 .
ZHOU L Y , LENG S P , WANG Q , et al . Integrated sensing and communication in UAV swarms for cooperative multiple targets tracking [J ] . IEEE Transactions on Mobile Computing , 2023 , 22 ( 11 ): 6526 - 6542 .
DHUHEIR M A , BACCOUR E , ERBAD A , et al . Deep reinforcement learning for trajectory path planning and distributed inference in resource-constrained UAV swarms [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 9 ): 8185 - 8201 .
JOUHARI M , AL-ALI A K , BACCOUR E , et al . Distributed CNN inference on resource-constrained UAVs for surveillance systems: design and optimization [J ] . IEEE Internet of Things Journal , 2021 , 9 ( 2 ): 1227 - 1242 .
LI T Y , CHENG Z K , LENG S P . A UAV swarm sensing oriented distributed computing cooperation scheme [C ] // Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS) . Piscataway : IEEE Press , 2021 : 168 - 173 .
LI T Y , LENG S P , WANG Z H , et al . Intelligent resource allocation schemes for UAV-swarm-based cooperative sensing [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 21 ): 21570 - 21582 .
WEI D W , MA J F , LUO L B , et al . Computation offloading over multi-UAV MEC network: a distributed deep reinforcement learning approach [J ] . Computer Networks , 2021 ( 199 ): 108439 .
SEIFERT E , SEIFERT S , VOGT H , et al . Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images [J ] . Remote Sensing , 2019 , 11 ( 10 ): 1252 .
TMUŠIĆ G , MANFREDA S , AASEN H , et al . Current practices in UAS-based environmental monitoring [J ] . Remote Sensing , 2020 , 12 ( 6 ): 1001 .
MENG K T , HE X F , WU Q Q , et al . Multi-UAV collaborative sensing and communication: joint task allocation and power optimization [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 6 ): 4232 - 4246 .
SHAKHOV V V , KOO I . Experiment design for parameter estimation in probabilistic sensing models [J ] . IEEE Sensors Journal , 2017 , 17 ( 24 ): 8431 - 8437 .
CHAKRABORTY A , ROUT R R , CHAKRABARTI A , et al . On network lifetime expectancy with realistic sensing and traffic generation model in wireless sensor networks [J ] . IEEE Sensors Journal , 2013 , 13 ( 7 ): 2771 - 2779 .
ZHANG S H , ZHANG H L , DI B Y , et al . Cellular cooperative unmanned aerial vehicle networks with sense-and-send protocol [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 1754 - 1767 .
ABE S . Support vector machines for pattern classification [M ] . London : Springer , 2005 .
SHILTON A , PALANISWAMI M , RALPH D , et al . Incremental training of support vector machines [J ] . IEEE Transactions on Neural Networks , 2005 , 16 ( 1 ): 114 - 131 .
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [EB ] . 2014 .
IQBAL S , SHA F . Actor-attention-critic for multi-agent reinforcement learning [EB ] . 2018 .
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构