浏览全部资源
扫码关注微信
1.西湖大学可信及通用人工智能实验室,浙江 杭州 310024
2.西安电子科技大学,陕西 西安 710071
[ "严宇萍(1995- ),女,博士,西湖大学可信及通用人工智能实验室在站博士后,主要研究方向为安全与隐私保护的机器学习与优化、具身智能安全、区块链等。" ]
[ "高婷(1998- ),女,西湖大学可信及通用人工智能实验室科研助理,主要研究方向为群体智能及其安全、具身智能安全等。" ]
[ "谢雨晗(2003- ),女,西安电子科技大学在读,主要研究方向为具身智能安全等。" ]
[ "金耀初(1966- ),男,博士,西湖大学可信及通用人工智能实验室讲席教授,主要研究方向为人工智能与计算智能的理论、算法和工程应用研究,特别是数据驱动的优化、多目标优化、演化机器学习、安全与隐私保护的机器学习与优化、图神经网络组合优化、演化发育通用人工智能及形态发育自组织机器人等。" ]
收稿日期:2024-12-01,
修回日期:2025-03-06,
纸质出版日期:2025-04-20
移动端阅览
严宇萍,高婷,谢雨晗等.群智能系统的安全与隐私保护综述[J].电信科学,2025,41(04):61-80.
YAN Yuping,GAO Ting,XIE Yuhan,et al.Security and privacy protection in swarm intelligence systems: a review[J].Telecommunications Science,2025,41(04):61-80.
严宇萍,高婷,谢雨晗等.群智能系统的安全与隐私保护综述[J].电信科学,2025,41(04):61-80. DOI: 10.11959/j.issn.1000-0801.2025052.
YAN Yuping,GAO Ting,XIE Yuhan,et al.Security and privacy protection in swarm intelligence systems: a review[J].Telecommunications Science,2025,41(04):61-80. DOI: 10.11959/j.issn.1000-0801.2025052.
群智能系统凭借其分布式架构、高自组织性和强鲁棒性等特征,在推动社会生产和生活方式智能化发展方面展现出巨大的潜力。然而,安全性与隐私保护问题已成为制约其稳定运行与广泛应用的关键因素,直接影响用户信任度与技术的规模化部署。因此,确保群智能系统的运行安全、实现数据隐私保护,并增强其在复杂环境中的抗攻击能力和鲁棒性,已成为当前亟待解决的重大问题。对此,全面描述了群智能系统的定义、特点、通用结构及其应用场景等,明确提出现阶段群智能系统涵盖数据、通信、系统可靠、鲁棒和信任管理的安全目标与相关数据、身份和意图的隐私保护目标,并分析主要攻击方法及相关防御技术。在此基础上,系统梳理当前主流的解决方案,以应对群智能系统在安全与隐私保护方面的问题。最后,深入探讨群智能系统在这一领域面临的核心挑战,并展望未来可能的发展方向,旨在为后续的研究提供理论支持与技术指导。
Swarm intelligence systems are recognized for their significant potential in advancing the intelligent development of social production and lifestyle
owing to their distributed architecture
high self-organization
and strong robustness. However
security and privacy protection issues were identified as critical factors limiting their stable operation and widespread application
directly impacting user trust and the large-scale deployment of the technology. Consequently
ensuring the operational security of swarm intelligence systems
achieving data privacy protection
and enhancing their anti-attack capabilities and robustness in complex environments were highlighted as urgent challenges to be addressed. In this context
their definitions
characteristics
general structures
and application scenarios of swarm intelligence systems were comprehensively described. The security objectives covering data
communication
system reliability
robustness
and trust management
as well as the privacy protection objectives related to data
identity
and intent
were explicitly proposed. Additionally
the main attack methods and related defense techniques were analyzed. Based on this
current mainstream solutions were systematically reviewed to address the security and privacy protection issues in swarm intelligence systems. Finally
the core challenges faced by swarm intelligence systems in this field were thoroughly discussed
and potential future development directions were explored
aiming to provide theoretical support and technical guidance for subsequent research.
KENNEDY J . Swarm intelligence [M ] // Handbook of nature-inspired and innovative computing: integrating classical models with emerging technologies . New York : Springer , 2006 : 187 - 219 .
KENNEDY J , EBERHART R C , SHI Y H . Swarm Intelligence [M ] . San Francisco : Morgan Kaufmann , 2001 .
HASSANIEN A E , EMARY E . Swarm intelligence: principles, advances, and applications [M ] . Boca Raton : CRC Press , 2016 .
BONABEAU E , DORIGO M , THERAULAZ G . Swarm intelligence: from natural to artificial systems [M ] . New York : Oxford University Press , 1999 .
BRAMBILLA M , FERRANTE E , BIRATTARI M , et al . Swarm robotics: a review from the swarm engineering perspective [J ] . Swarm Intelligence , 2013 , 7 : 1 - 41 .
DORIGO M , THERAULAZ G , TRIANNI V . Reflections on the future of swarm robotics [J ] . Science Robotics , 2020 , 5 ( 49 ): eabe4385 .
ŞAHIN E . Swarm robotics: from sources of inspiration to domains of application [C ] // Proceedings of the SAB 2004 International Workshop . Berlin : Springer , 2005 : 10 - 20 .
CHEN W , LIU J J , GUO H Z , et al . Toward robust and intelligent drone swarm: challenges and future directions [J ] . IEEE Network , 2020 , 34 ( 4 ): 278 - 283 .
TOSATO P , FACINELLI D , PRADA M , et al . An autonomous swarm of drones for industrial gas sensing applications [C ] // Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks"(WoWMoM) . IEEE , 2019 : 1 - 6 .
GARCÍA-NIETO J , ALBA E , CAROLINA OLIVERA A . Swarm intelligence for traffic light scheduling: Application to real urban areas [J ] . Engineering Applications of Artificial Intelligence , 2012 , 25 ( 2 ): 274 - 283 .
HOAR R , PENNER J , JACOB C . Evolutionary swarm traffic: if ant roads had traffic lights [C ] // Proceedings of the 2002 Congress on Evolutionary Computation . CEC' 02 . Piscataway : IEEE Press , 2002: 1910 - 1915 .
CAMPION M , RANGANATHAN P , FARUQUE S . UAV swarm communication and control architectures: a review [J ] . Journal of Unmanned Vehicle Systems , 2019 , 7 ( 2 ): 93 - 106 .
KASSABALIDIS I , EL-SHARKAWI M A , MARKS R J , et al . Swarm intelligence for routing in communication networks [C ] // Proceedings of the GLOBECOM'01 . IEEE Global Telecommunications Conference . Piscataway : IEEE Press , 2001 : 3613 - 3617 .
SCHRANZ M , DI CARO G A , SCHMICKL T , et al . Swarm intelligence and cyber-physical systems: concepts, challenges and future trends [J ] . Swarm and Evolutionary Computation , 2021 , 60 : 100762 .
HIGGINS F , TOMLINSON A , MARTIN K M . Threats to the swarm: security considerations for swarm robotics [J ] . International Journal on Advances in Security , 2009 , 2 ( 2&3 ): 288 - 297 .
SHAMMAR E , CUI X H , AL-QANESS M A A . Swarm learning: a survey of concepts, applications, and trends [J ] . arXiv preprint , 2024 , arXiv: 2405.00556 .
HUNT E R , HAUERT S . A checklist for safe robot swarms [J ] . Nature Machine Intelligence , 2020 , 2 ( 8 ): 420 - 422 .
HIGGINS F , TOMLINSON A , MARTIN K M . Survey on security challenges for swarm robotics [C ] // Proceedings of the 2009 Fifth International Conference on Autonomic and Autonomous Systems . Piscataway : IEEE Press , 2009 : 307 - 312 .
WILSON J , CHANCE G , WINTER P , et al . Trustworthy swarms [C ] // Proceedings of the First International Symposium on Trustworthy Autonomous Systems . New York : ACM , 2023 : 1 - 11 .
FERBER J , WEISS G . Multi-agent systems: an introduction to distributed artificial intelligence [M ] . Boston : Addison-Wesley , 1999 .
GUO H L , MENG Y , JIN Y C . Analysis of local communication load in shape formation of a distributed morphogenetic swarm robotic system [C ] // Proceedings of the IEEE Congress on Evolutionary Computation . Piscataway : IEEE Press , 2010 : 1 - 8 .
DORIGO M . Optimization, learning and natural algorithms [D ] . Milano : Politecnico di Milano , 1992 .
KENNEDY J , EBERHART R . Particle swarm optimization [C ] // Proceedings of the ICNN'95 - International Conference on Neural Networks . Piscataway : IEEE Press , 1995 : 1942 - 1948 .
MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer [J ] . Advances in Engineering Software , 2014 , 69 : 46 - 61 .
AUER L , FEICHTNER A , STEINHÄUSLER F , et al . Swarm-technology for large-area photogrammetry survey and spatially complex 3D modelling [J ] . International Journal of Latest Research in Engineering and Technology , 2018 , 4 ( 9 ): 33 - 39 .
Ball J B . Countering swarms: strategic considerations and opportunities in drone warfare [J ] . Joint Force Quarterly 107 , 2022 ( 4 ): 4 - 14 .
YANG G Z , BELLINGHAM J , DUPONT P E , et al . The grand challenges of Science robotics [J ] . Science Robotics , 2018 , 3 ( 14 ): eaar7650 .
RUBENSTEIN M , CORNEJO A , NAGPAL R . Programmable self-assembly in a thousand-robot swarm [J ] . Science , 2014 , 345 ( 6198 ): 795 - 799 .
PRAKASH J , MURALI L , MANIKANDAN N , et al . A vehicular network based intelligent transport system for smart cities using machine learning algorithms [J ] . Scientific Reports , 2024 , 14 ( 1 ): 468 .
ENGLUND C , AKSOY E E , ALONSO-FERNANDEZ F , et al . AI perspectives in Smart Cities and Communities to enable road vehicle automation and smart traffic control [J ] . arXiv preprint , 2021 , arXiv: 2104.03150 .
ZHANG D , FENG G , SHI Y , et al . Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances [J ] . IEEE/CAA Journal of Automatica Sinica , 2021 , 8 ( 2 ): 319 - 333 .
SAMONAS S , COSS D . The CIA strikes back: redefining confidentiality, integrity and availability in security [J ] . Journal of Information System Security , 2014 , 10 ( 3 ): 21 - 45 .
STAVROULAKIS P , STAMP M . Handbook of information and communication security [M ] . Berlin : Springer , 2010 .
GU Q J , LIU P . Denial of service attacks [M ] // Handbook of computer networks: distributed networks, network planning, control, management, and new trends and applications . Hcbokel Wiley, 2007 : 454 - 468 .
GRIBBLE S D . Robustness in complex systems [C ] // Proceedings Eighth Workshop on Hot Topics in Operating Systems . Piscataway : IEEE Press , 2002 : 21 - 26 .
OMETOV A , BEZZATEEV S , MÄKITALO N , et al . Multi-factor authentication: a survey [J ] . Cryptography , 2018 , 2 ( 1 ): 1 .
SARKAR K R . Assessing insider threats to information security using technical, behavioural and organisational measures [J ] . Information Security Technical Report , 2010 , 15 ( 3 ): 112 - 133 .
YOUSEF K M A , ALMAJALI A , GHALYON S A , et al . Analyzing cyber-physical threats on robotic platforms [J ] . Sensors , 2018 , 18 ( 5 ): 1643 .
LU Z , LU X , WANG W Y , et al . Review and evaluation of security threats on the communication networks in the smart grid [C ] // Proceedings of the 2010 - MILCOM 2010 Military Communications Conference . Piscataway : IEEE Press , 2010 : 1830 - 1835 .
BACHER R , GLAVITSCH H . Network topology optimization with security constraints [J ] . IEEE Transactions on Power Systems , 1986 , 1 ( 4 ): 103 - 111 .
BOUHATA D , MOUMEN H , MAZARI J A , et al . Byzantine fault tolerance in distributed machine learning: a survey [J ] . arXiv preprint , 2022 , arXiv: 2205.02572 .
GUERRAOUI R , GUPTA N , PINOT R . Byzantine machine learning: a primer [J ] . ACM Computing Surveys , 2024 , 56 ( 7 ): 1 - 39 .
ZHANG G R , PAN F , MAO Y H , et al . Reaching consensus in the Byzantine empire: a comprehensive review of BFT consensus algorithms [J ] . ACM Computing Surveys , 2024 , 56 ( 5 ): 1 - 41 .
DOUCEUR J R . The sybil attack [C ] // Proceedings of the First International Workshop(IPTPS 2002) . Berlin : Springer , 2002 : 251 - 260 .
NABEEL M . The many faces of end-to-end encryption and their security analysis [C ] // Proceedings of the 2017 IEEE International Conference on Edge Computing (EDGE) . Piscataway : IEEE Press , 2017 : 252 - 259 .
ROTHBLUM R . Homomorphic encryption: from private-key to public-key [C ] // Proceedings of the 8th Theory of Cryptography Conference(TCC 2011) . Berlin : Springer , 2011 : 219 - 234 .
BRAKERSKI Z , GENTRY C , VAIKUNTANATHAN V . (Leveled) Fully homomorphic encryption without bootstrapping [J ] . ACM Transactions on Computation Theory , 2014 , 6 ( 3 ): 1 - 36 .
GOLDREICH O . The foundations of cryptography: volume Ⅱ basic applications [M ] . New York : Cambridge University Press , 2004 .
PERLMAN R . An overview of PKI trust models [J ] . IEEE Network , 1999 , 13 ( 6 ): 38 - 43 .
BONEH D , FRANKLIN M . Identity-based encryption from the Weil pairing [C ] // Proceedings of the 21st Annual International Cryptology Conference . Berlin : Springer , 2001 : 213 - 229 .
ZHENG Z B , XIE S A , DAI H N , et al . Blockchain challenges and opportunities: a survey [J ] . International Journal of Web and Grid Services , 2018 , 14 ( 4 ): 352 - 375 .
LIU S Y , VIOTTI P , CACHIN C , et al . XFT: practical fault tolerance beyond crashes [C ] // Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16) . Berkeley : USENIX Association , 2015 : 485 - 500 .
CASTRO M , LISKOV B . Practical Byzantine fault tolerance and proactive recovery [J ] . ACM Trans Comput Syst , 2021 , 20 ( 4 ): 398 - 461 .
JAIN P , GYANCHANDANI M , KHARE N . Big data privacy: a technological perspective and review [J ] . Journal of Big Data , 2016 , 3 : 25 .
CAPURRO R , ELDRED M , NAGEL D . Digital whoness: identity, privacy and freedom in the cyberworld [M ] . Frankfurt : Ontos Verlag , 2013 .
GERBER N , GERBER P , VOLKAMER M . Explaining the privacy paradox: a systematic review of literature investigating privacy attitude and behavior [J ] . Computers & Security , 2018 , 77 : 226 - 261 .
DWORK C . Differential privacy [C ] // Proceedings of the 33rd International Colloquium(ICALP 2006) . Berlin : Springer , 2006 : 1 - 12 .
FIEGE U , FIAT A , SHAMIR A . Zero knowledge proofs of identity [C ] // Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing - STOC '87 . New York : ACM , 1987 : 210 - 217 .
DE SANTIS A , MICALI S , PERSIANO G . Non-interactive zero-knowledge proof systems [M ] // Advances in Cryptology - CRYPTO '87 . Berlin : Springer , 1988 : 52 - 72 .
PARTALA J , NGUYEN T H , PIRTTIKANGAS S . Non-interactive zero-knowledge for blockchain: a survey [J ] . IEEE Access , 2020 , 8 : 227945 - 227961 .
ZHANG C , XIE Y , BAI H , et al . A survey on federated learning [J ] . Knowledge-Based Systems , 2021 , 216 : 106775 .
WANG Y , ISHII H . Resilient consensus through event-based communication [J ] . IEEE Transactions on Control of Network Systems , 2020 , 7 ( 1 ): 471 - 482 .
WEN G H , LV Y Z , ZHENG W X , et al . Joint robustness of time-varying networks and its applications to resilient consensus [J ] . IEEE Transactions on Automatic Control , 2023 , 68 ( 11 ): 6466 - 6480 .
RENGANATHAN V , SUMMERS T . Spoof resilient coordination for distributed multi-robot systems [C ] // Proceedings of the 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS) . Piscataway : IEEE Press , 2017 : 135 - 141 .
WARDEGA K , VON HIPPEL M , TRON R , et al . Byzantine resilience at swarm scale: a decentralized blocklist protocol from inter-robot accusations [J ] . arXiv preprint , 2013 ,arXiv: 2301.06977 .
YUAN L W , ISHII H . Secure consensus with distributed detection via two-hop communication [J ] . Automatica , 2021 , 131 : 109775 .
GIL S , KUMAR S , MAZUMDER M , et al . Guaranteeing spoof-resilient multi-robot networks [J ] . Autonomous Robots , 2017 , 41 ( 6 ): 1383 - 1400 .
HUANG Y , WANG W , JIANG T , et al . Detecting colluding sybil attackers in robotic networks using backscatters [J ] . IEEE/ACM Transactions on Networking , 2021 , 29 ( 2 ): 793 - 804 .
SHOUKRY Y , MISHRA S , LUO Z T , et al . Sybil attack resilient traffic networks: a physics-based trust propagation approach [C ] // Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS) . Piscataway : IEEE Press , 2018 : 43 - 54 .
FERRER E C . The blockchain: a new framework for robotic swarm systems [J ] . arXiv preprint , 2016 , arXiv: 1608.00695 .
STROBEL V , FERRER E C , DORIGO M . Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario [C ] // Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems(AAMAS '18) . Richland : International Foundation for Autonomous Agents and Multiagent Systems , 2018 : 541 - 549 .
STROBEL V , PACHECO A , DORIGO M . Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy [J ] . Science Robotics , 2023 , 8 ( 79 ): eabm4636 .
STROBEL V , CASTELLÓ FERRER E , DORIGO M . Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots [J ] . Frontiers in Robotics and AI , 2020 , 7 : 54 .
Pacheco A , Strobel V , Dorigo M . A blockchain-controlled physical robot swarm communicating via an Ad-Hoc network [C ] // Proceedings of the 12th International Conference(ANTS 2020) . Cham : Springer , 2020 : 3 - 15 .
JONES A , STRAUB J . Using deep learning to detect network intrusions and malware in autonomous robots [C ] // Proceedings of the Cyber Sensing 2017 . Anaheim : SPIE , 2017 , 10185 : 45 - 50 .
ABOUELYAZID M . Adversarial deep reinforcement learning to mitigate sensor and communication attacks for secure swarm robotics [J ] . Journal of Intelligent Connectivity and Emerging Technologies , 2023 , 8 ( 3 ): 94 - 112 .
MASADEH A , ALHAFNAWI M , SALAMEH H A B , et al . Reinforcement learning-based security/safety UAV system for intrusion detection under dynamic and uncertain target movement [J ] . IEEE Transactions on Engineering Management , 2022 , 71 : 12498 - 12508 .
SHAFARENKO A . A zero-trust swarm security architecture and protocols [J ] . IACR Cryptology ePrint Archive , 2024 : 1176 .
COGLIANI S , FENG B , FERRADI H , et al . Public key-based lightweight swarm authentication [M ] // Cyber-Physical systems security . Cham : Springer , 2018 : 255 - 267 .
MAIMUŢ D A , TEŞELEANU G . A generic view on the unified zero-knowledge protocol and its applications [C ] // Information Security Theory and Practice . Cham : Springer , 2020 : 32 - 46 .
TESELEANU G . Lightweight swarm authentication [C ] // Proceedings of the 14th International Conference(SecITC 2021) . Cham : Springer , 2022 : 248 - 259 .
RUAN M H , GAO H , WANG Y Q . Secure and privacy-preserving consensus [J ] . IEEE Transactions on Automatic Control , 2019 , 64 ( 10 ): 4035 - 4049 .
KISHIDA M . Encrypted average consensus with quantized control law [C ] // Proceedings of the 2018 IEEE Conference on Decision and Control (CDC) . Piscataway : IEEE Press , 2018 : 5850 - 5856 .
GOJKOVIĆ M , SCHRANZ M . Preserving privacy in logistics by using swarm intelligence from the bottom-up [C ] // Proceedings of the 2024 IEEE 12th International Conference on Intelligent Systems (IS) . Piscataway : IEEE Press , 2024 : 1 - 7 .
WANG X , HE J P , CHENG P , et al . Privacy preserving average consensus with different privacy guarantee [C ] // Proceedings of the 2018 Annual American Control Conference (ACC) . Piscataway : IEEE Press , 2018 : 5189 - 5194 .
CHEN W , WANG Z D , HU J , et al . Differentially private average consensus with logarithmic dynamic encoding-decoding scheme [J ] . IEEE Transactions on Cybernetics , 2023 , 53 ( 10 ): 6725 - 6736 .
ZHANG Z Q , ZHU H , XIE M Y . Differential privacy may have a potential optimization effect on some swarm intelligence algorithms besides privacy-preserving [J ] . Information Sciences , 2024 , 654 : 119870 .
RAMOS G , PEQUITO S . Designing communication networks for discrete-time consensus for performance and privacy guarantees [J ] . Systems & Control Letters , 2023 , 180 : 105608 .
ZHANG J , LU J Q , HADJICOSTIS C N . Average consensus for expressed and private opinions [J ] . IEEE Transactions on Automatic Control , 2024 , 69 ( 8 ): 5627 - 5634 .
TORRA V , GALVÁN E , NAVARRO-ARRIBAS G . PSO + FL = PAASO: particle swarm optimization + federated learning = privacy-aware agent swarm optimization [J ] . International Journal of Information Security , 2022 , 21 ( 6 ): 1349 - 1359 .
ZHOU X K , LIANG W , WANG K I , et al . Decentralized P2P federated learning for privacy-preserving and resilient mobile robotic systems [J ] . IEEE Wireless Communications , 2023 , 30 ( 2 ): 82 - 89 .
王瑞锦 , 王金波 , 张凤荔 , 等 . 联邦原型学习的特征图中毒攻击和双重防御机制 [J ] . 软件学报 , 2025 , 36 ( 3 ): 1355 - 1374 .
WANG R J , WANG J B , ZHANG F L , et al . Feature map poisoning attack and dual defense mechanism for federated prototype learning [J ] . Journal of Software , 2025 , 36 ( 3 ): 1355 - 1374 .
张浩东 , 杨柳 , 于剑 , 等 . 基于原型学习的联邦持续学习方法 [J ] . 中国科学: 信息科学 , 2024 , 54 ( 10 ): 2428 - 2442 .
ZHANG H D , YANG L , YU J , et al . Federated continual learning based on prototype learning [J ] . Scientia Sinica (Informationis) , 2024 , 54 ( 10 ): 2428 - 2442 .
DOMINGO-FERRER J , BLANCO-JUSTICIA A , MANJÓN J , et al . Secure and privacy-preserving federated learning via co-utility [J ] . IEEE Internet of Things Journal , 2021 , 9 ( 5 ): 3988 - 4000 .
LIPPMANN R , HAINES J W , FRIED D J , et al . The 1999 DARPA off-line intrusion detection evaluation [J ] . Computer Networks , 2000 , 34 ( 4 ): 579 - 595 .
TAVALLAEE M , BAGHERI E , LU W , et al . A detailed analysis of the KDD CUP 99 data set [C ] // Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications . Piscataway : IEEE Press , 2009 : 1 - 6 .
DHANABAL L , SHANTHARAJAH D S P . A study on NSL-KDD dataset for intrusion detection system based on classification algorithms [J ] . International Journal of Advanced Research in Computer and Communication Engineering , 2015 , 4 ( 6 ): 446 - 452 .
SONG J , TAKAKURA H , OKABE Y , et al . Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation [C ] // Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security . New York : ACM , 2011 : 29 - 36 .
MOUSTAFA N , SLAY J . UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) [C ] // Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS) . Piscataway : IEEE Press , 2015 : 1 - 6 .
GRINGOLI F , SALGARELLI L , DUSI M , et al . GT: picking up the truth from the ground for internet traffic [J ] . ACM SIGCOMM Computer Communication Review , 2009 , 39 ( 5 ): 12 - 18 .
GARCÍA S , GRILL M , STIBOREK J , et al . An empirical comparison of botnet detection methods [J ] . Computers & Security , 2014 , 45 : 100 - 123 .
BHUYAN M H , BHATTACHARYYA D K , KALITA J K . Towards generating real-life datasets for network intrusion detection [J ] . International Journal of Network Security , 2015 , 17 ( 6 ): 683 - 701 .
ALKASASSBEH M , AL-NAYMAT G , A A B , et al . Detecting distributed denial of service attacks using data mining techniques [J ] . International Journal of Advanced Computer Science and Applications , 2016 , 7 ( 1 ): 436 - 445 .
SHARAFALDIN I , LASHKARI A H , HAKAK S , et al . Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy [C ] // Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST) . IEEE , 2019 : 1 - 8 .
HERZALLA D , LUNARDI W T , ANDREONI M . TII-SSRC-23 dataset: typological exploration of diverse traffic patterns for intrusion detection [J ] . IEEE Access , 2023 , 11 : 118577 - 118594 .
CALDAS S , DUDDU S M K , WU P , et al . LEAF: a benchmark for federated settings [J ] . arXiv preprint , 2018 , arXiv: 1812.01097 .
CAO X Y , FANG M H , LIU J , et al . FLTrust: Byzantine-robust federated learning via trust bootstrapping [J ] . arXiv preprint , 2020 , arXiv: 2012.13995 .
DENG L . The MNIST database of handwritten digit images for machine learning research [J ] . IEEE Signal Processing Magazine , 2012 , 29 ( 6 ): 141 - 142 .
KRIZHEYSKY A , SUTSKEVER I , HINTON G E . Imagevet classification with deep convolutional neural networks [J ] . Communication of the ACM , 2017 , 60 ( 6 ): 84 - 90 .
CASTRO M , LISKOV B . Practical Byzantine fault tolerance [C ] // Proceedings of the Third Symposium on Operating Systems Design and Implementation . Berkeley : USENIX Association , 1999 : 173 - 186 .
ALHARBY M , van MOORSEL A . Blocksim: an extensible simulation tool for blockchain systems [J ] . Frontiers in Blockchain , 2020 , 3 : 28 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构