浏览全部资源
扫码关注微信
电子科技大学信息与通信工程学院,四川 成都 611731
[ "王煜婷 (2000- ),女,电子科技大学信息与通信工程学院博士生,主要研究方向为无线通信网络、无人机自组网、多智能体强化学习、数字孪生等。" ]
[ "冷甦鹏(1973- ),男,电子科技大学信息与通信工程学院教授、博士生导师,主要研究方向为物联网、车联网、新一代宽带无线网络、无线自组织网络、智能交通信息系统的资源管理、介质访问控制、路由、组网与互联、智能算法理论及技术应用等。" ]
[ "熊凯(1991- ),男,电子科技大学信息与通信工程学院副研究员、在站博士后,主要研究方向为无人机编队资源分配、移动边缘计算和机器学习。" ]
收稿日期:2025-01-14,
修回日期:2025-03-10,
纸质出版日期:2025-03-20
移动端阅览
王煜婷,冷甦鹏,熊凯.面向高动态城市空中交通网络的多径智能传输策略[J].电信科学,2025,41(03):64-72.
WANG Yuting,LENG Supeng,XIONG Kai.Multipath intelligent transmission strategy for UAM dynamic networks[J].Telecommunications Science,2025,41(03):64-72.
王煜婷,冷甦鹏,熊凯.面向高动态城市空中交通网络的多径智能传输策略[J].电信科学,2025,41(03):64-72. DOI: 10.11959/j.issn.1000-0801.2025099.
WANG Yuting,LENG Supeng,XIONG Kai.Multipath intelligent transmission strategy for UAM dynamic networks[J].Telecommunications Science,2025,41(03):64-72. DOI: 10.11959/j.issn.1000-0801.2025099.
飞行汽车作为低空经济的重要载体,对于大力发展城市空中交通、构建高效的低空智联网具有十分重要的作用。然而,灵活和广泛的飞行范围导致飞行汽车网络通信链路不稳定,网络拓扑动态变化。针对这些问题,提出了一种多径智能传输策略,以实现高效的数据传输。首先提出了一种基于强化学习的多径智能路由算法,该算法不仅能有效提升路由效率、降低路由时延,还能够根据不同的传输需求动态划分数据包,以适应物理环境的变化。为进一步提高路由算法对动态环境的适应性,设计了一种环境检验机制来判断当前路由策略与动态网络的匹配程度,实现了在路由过程中自适应地调整路由策略。仿真实验表明,在不同情境下,基于强化学习的多径智能传输策略在有效降低端到端传输时延的同时,还提高了数据成功恢复的概率。
As an important vehicle for the low-altitude economy
the flying cars play a crucial role in vigorously developing urban air mobility (UAM) and building an efficient low-altitude intelligent network. However
the high mobility of flying cars introduces instability in transmission links due to high-dynamic network changes. To address these challenges
a multipath intelligent transmission strategy was proposed to achieve efficient data transmission. Firstly
a multipath intelligent routing algorithm based on reinforcement learning was introduced
which was not only proven to effectively enhance routing efficiency and reduce routing latency but also capable of dynamically segmenting data packets according to different transmission requirements to adapt to changes in the physical environment. To further improve the adaptability of the routing algorithm to dynamic environments
an environmental validation mechanism was designed to evaluate the compatibility between current routing strategies and dynamic network
enabling self-adaptive adjustment of routing strategies during the transmission process. Simulation experiments demonstrate that
under various scenarios
the multipath intelligent routing strategy based on reinforcement learning (MIRSRL) effectively reduces end-to-end transmission delay while also increasing the probability of successful data recovery.
COHEN A P , SHAHEEN S A , FARRAR E M . Urban air mobility: history, ecosystem, market potential, and challenges [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 9 ): 6074 - 6087 .
HUANG H L , SU J C , WANG F Y . The potential of low-altitude airspace: the future of urban air transportation [J ] . IEEE Transactions on Intelligent Vehicles , 2024 , 9 ( 8 ): 5250 - 5254 .
WHITWORTH H , AL-RUBAYE S , TSOURDOS A . Urban air mobility link budget analysis in 5G communication systems [C ] // Proceedings of the 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) . Piscataway : IEEE Press , 2023 : 400 - 406 .
XIONG K , LENG S P , CHEN L Y , et al . RIS-aided trajectory optimization in layered urban air mobility [J ] . IEEE Internet of Things Journal , 2025 , 12 ( 2 ): 2188 - 2202 .
XIONG K , YU H Q , LENG S P , et al . Multi-hop RIS-aided learning model sharing for urban air mobility [J ] . IEEE Transactions on Intelligent Transportation Systems , 2025 , 26 ( 3 ): 3947 - 3959 .
MACHUMILANE A , GOTTA A , CASSARÁ P , et al . Actor-critic scheduling for path-aware air-to-ground multipath multimedia delivery [C ] // Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring) . Piscataway : IEEE Press , 2022 : 1 - 5 .
MAZYAVKINA N , SVIRIDOV S , IVANOV S , et al . Reinforcement learning for combinatorial optimization: a survey [J ] . Computers & Operations Research , 2021 , 134 : 105400 .
WANG Z L , YAO H P , MAI T L , et al . Cooperative reinforcement learning aided dynamic routing in UAV swarm networks [C ] // Proceedings of the ICC 2022 - IEEE International Conference on Communications . Piscataway : IEEE Press , 2022 : 1 - 6 .
VERES M , MOUSSA M . Deep learning for intelligent transportation systems: a survey of emerging trends [J ] . IEEE Transactions on Intelligent Transportation Systems , 21 ( 8 ): 3152 - 3168 .
ZHOU L Y , LENG S P , WANG Q , et al . Integrated sensing and communication in UAV swarms for cooperative multiple targets tracking [J ] . IEEE Transactions on Mobile Computing , 2022 , 22 ( 11 ): 6526 - 6542 .
LIU C Y , XU M W , YANG Y , et al . DRL-OR: deep reinforcement learning-based online routing for multi-type service requirements [C ] // Proceedings of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2021 : 1 - 10 .
LI F , SONG X Y , CHEN H J , et al . Hierarchical routing for vehicular ad hoc networks via reinforcement learning [J ] . IEEE Transactions on Vehicular Technology , 68 ( 2 ): 1852 - 1865 .
MAI T L , YAO H P , XIONG Z H , et al . Multi-agent actor-critic reinforcement learning based in-network load balance [C ] // Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference . Piscataway : IEEE Press , 2020 : 1 - 6 .
LOWE R , WU Y , TAMAR A , et al . Multi-agent actor-critic for mixed cooperative-competitive environments [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . New York : ACM Press , 2017 : 6382 - 6393 .
YANG Z F , LIU D , MA L . Vehicle trajectory prediction based on LSTM network [C ] // Proceedings of the 2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT) . Piscataway : IEEE Press , 2022 : 1 - 4 .
MARINA M K , DAS S R . Ad hoc on-demand multipath distance vector routing [J ] . ACM SIGMOBILE Mobile Computing and Communications Review , 2002 , 6 ( 3 ): 92 - 93 .
BUJARI A , PALAZZI C E , RONZANI D . A comparison of stateless position-based packet routing algorithms for FANETs [J ] . IEEE Transactions on Mobile Computing , 2018 , 17 ( 11 ): 2468 - 2482 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构