浏览全部资源
扫码关注微信
1.郑州工业应用技术学院大数据信息管理中心,河南 郑州 451150
2.周口职业技术学院信息工程学院,河南 周口466002
[ "刘丽伟(1983- ),男,郑州工业应用技术学院大数据信息管理中心副教授,主要研究方向为数据安全与通信网络。" ]
[ "赵红超(1976- ),男,郑州工业应用技术学院大数据信息管理中心副教授,主要研究方向为数据安全与通信网络。" ]
[ "李学威(1983- ),男,周口职业技术学院信息工程学院副教授,主要研究方向为计算机应用。" ]
[ "孙滨(1983- ),男,郑州工业应用技术学院大数据信息管理中心教授,主要研究方向为机器学习与教育大数据。" ]
收稿日期:2024-11-10,
修回日期:2025-02-14,
纸质出版日期:2025-04-20
移动端阅览
刘丽伟,赵红超,李学威等.基于多尺度残差时间卷积网络的物联网入侵检测模型[J].电信科学,2025,41(04):164-175.
LIU Liwei,ZHAO Hongchao,LI Xuewei,et al.Multiscale residual temporal convolutional networks-based intrusion detection model in Internet of things[J].Telecommunications Science,2025,41(04):164-175.
刘丽伟,赵红超,李学威等.基于多尺度残差时间卷积网络的物联网入侵检测模型[J].电信科学,2025,41(04):164-175. DOI: 10.11959/j.issn.1000-0801.2025046.
LIU Liwei,ZHAO Hongchao,LI Xuewei,et al.Multiscale residual temporal convolutional networks-based intrusion detection model in Internet of things[J].Telecommunications Science,2025,41(04):164-175. DOI: 10.11959/j.issn.1000-0801.2025046.
入侵检测可主动鉴别物联网流量攻击,它是维护物联网安全的重要措施。为此,提出基于多尺度残差时间卷积网络的入侵检测模型(multiscale residual temporal convolutional networks-based intrusion detection model,MRID)。MRID采用多尺度残差时间卷积模块,以增强网络学习时空的表征能力。同时,MRID采用了一个改进的流量注意力机制,帮助模型在学习过程中更关注重要特征。MRID可便捷应用于基于雾层的物联网架构中,以提供高效的实时入侵检测。利用数据集CICIDS2017和CSE-CIC-IDS2018验证MRID的性能。性能分析表明,MRID提高了入侵检测的效率,并在保持计算效率的同时,增强了模型的鲁棒性。
Intrusion detection can actively identify Internet of things (IoT) traffic attacks
which is an important measure to maintain IoT security. Therefore
multiscale residual temporal convolutional networks-based intrusion detection model (MRID) was proposed. In MRID
a multiscale residual temporal convolutional module was utilized to enhance the network capability in learning spatiotemporal representations. An improved traffic attention mechanism was introduced to estimate the importance score that helps the model to concentrate on important information during leaning. The proposed MRID was easily integrated into a fog-enabled IoT to offer efficient real-time intrusion detection. Finally
empirical evaluations on two recent datasets (CICIDS2017 and CSE-CIC-IDS2018) were conducted
demonstrating that MRID improved the efficiency of intrusion detection and increased the robustness of model while maintaining computational efficiency.
罗国宇 , 汪学舜 , 戴锦友 . 物联网入侵检测的随机特征图神经网络模型 [J ] . 计算机工程与应用 , 2024 , 60 ( 21 ): 264 - 273 .
LUO G Y , WANG X S , DAI J Y . Random feature graph neural network for intrusion detection in Internet of Things [J ] . Computer Engineering and Applications , 2024 , 60 ( 21 ): 264 - 273 .
李聪宇 , 赵利辉 , 安洋 . 基于图神经网络的物联网入侵检测研究 [J ] . 中北大学学报(自然科学版) , 2024 , 45 ( 2 ): 194 - 204 .
LI C Y , ZHAO L H , AN Y . Research on intrusion detection of Internet of things based on graph neural network [J ] . Journal of North University of China (Natural Science Edition) , 2024 , 45 ( 2 ): 194 - 204 .
刘奇旭 , 肖聚鑫 , 谭耀康 , 等 . 工业互联网流量分析技术综述 [J ] . 通信学报 , 2024 , 45 ( 8 ): 221 - 237 .
LIU Q X , XIAO J X , TAN Y K , et al . Survey of industrial Internet traffic analysis technology [J ] . Journal on Communications , 2024 , 45 ( 8 ): 221 - 237 .
项睿涵 , 潘巨龙 , 李玲艺 , 等 . 一种物联网入侵检测和成员推理攻击研究 [J ] . 传感技术学报 , 2024 , 37 ( 2 ): 317 - 325 .
XIANG R H , PAN J L , LI L Y , et al . A new study of an IoT intrusion detection and membership inference attack [J ] . Chinese Journal of Sensors and Actuators , 2024 , 37 ( 2 ): 317 - 325 .
吴昊 , 郝佳佳 , 卢云龙 . 物联网场景下基于蜜场的分布式网络入侵检测系统研究 [J ] . 通信学报 , 2024 , 45 ( 1 ): 106 - 118 .
WU H , HAO J J , LU Y L . Research on distributed network intrusion detection system for IoT based on honeyfarm [J ] . Journal on Communications , 2024 , 45 ( 1 ): 106 - 118 .
SHAFIQ M , TIAN Z H , BASHIR A K , et al . CorrAUC: a malicious bot-IoT traffic detection method in IoT network using machine-learning techniques [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 5 ): 3242 - 3254 .
STOYANOVA M , NIKOLOUDAKIS Y , PANAGIOTAKIS S , et al . A survey on the Internet of Things (IoT) forensics: challenges, approaches, and open issues [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 2 ): 1191 - 1221 .
毛智强 , 徐耀松 , 王丹丹 , 等 . 基于模态分解和时间卷积网络的瓦斯涌出量组合预测 [J ] . 传感技术学报 , 2024 , 37 ( 10 ): 1795 - 1802 .
MAO Z Q , XU Y S , WANG D D , et al . Combined prediction of gas emergence based on modalihj decomposition and temporal convolutional networks [J ] . Chinese Journal of Sensors and Actuators , 2024 , 37 ( 10 ): 1795 - 1802 .
ZHOU X K , HU Y Y , LIANG W , et al . Variational LSTM enhanced anomaly detection for industrial big data [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 5 ): 3469 - 3477 .
胡炜晨 , 许聪源 , 詹勇 , 等 . 一种适用于小样本条件的网络入侵检测方法 [J ] . 电信科学 , 2023 , 39 ( 10 ): 85 - 100 .
HU W C , XU C Y , ZHAN Y , et al . A network intrusion detection method designed for few-shot scenarios [J ] . Telecommunications Science , 2023 , 39 ( 10 ): 85 - 100 .
江魁 , 卢橹帆 , 苏耀阳 , 等 . 基于Attention-GRU的SHDoS攻击检测研究 [J ] . 信息网络安全 , 2024 , 24 ( 3 ): 427 - 437 .
JIANG K , LU L F , SU Y Y , et al . SHDoS attack detection research based on attention-GRU [J ] . Netinfo Security , 2024 , 24 ( 3 ): 427 - 437 .
吴锋振 , 杨德宏 , 李俊 , 等 . 非对称卷积金字塔残差网络的遥感影像建筑物提取 [J ] . 遥感技术与应用 , 2023 , 38 ( 6 ): 1467 - 1476 .
WU F Z , YANG D H , LI J , et al . Building extraction from remote rensing images using asymmetric convolution pyramid residual network [J ] . Remote Sensing Technology and Application , 2023 , 38 ( 6 ): 1467 - 1476 .
CHENG Y L , XU Y , ZHONG H , et al . Leveraging semisupervised hierarchical stacking temporal convolutional network for anomaly detection in IoT communication [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 1 ): 144 - 155 .
LIN C F , WANG S D . Fuzzy support vector machines [J ] . IEEE Transactions on Neural Networks , 2002 , 13 ( 2 ): 464 - 471 .
KURNIABUDI , STIAWAN D , DARMAWIJOYO , et al . CICIDS-2017 dataset feature analysis with information gain for anomaly detection [J ] . IEEE Access , 2020 , 8 : 132911 - 132921 .
GAMAGE S , SAMARABANDU J . Deep learning methods in network intrusion detection: a survey and an objective comparison [J ] . Journal of Network and Computer Applications , 2020 , 169 : 102767 .
DI MAURO M , GALATRO G , LIOTTA A . Experimental review of neural-based approaches for network intrusion management [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 4 ): 2480 - 2495 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构